Shape preservation regions for six-dimensional spaces

被引:12
|
作者
Carnicer, J. M.
Mainar, E.
Pena, J. M.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain
关键词
shape preserving representations; critical length; B-bases; trigonometric and hyperbolic functions;
D O I
10.1007/s10444-005-7505-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the critical length for design purposes of six-dimensional spaces invariant under translations and reflections containing the functions 1, cos iota and sin iota. These spaces also contain the first degree polynomials as well as trigonometric and/or hyperbolic functions. We identify the spaces whose critical length for design purposes is greater than 2 pi and find its maximum 4 pi. By a change of variables, two biparametric families of spaces arise. We call shape preservation region to the set of admissible parameters in order that the space has shape preserving representations for curves. We describe the shape preserving regions for both families.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [1] Shape preservation regions for six-dimensional spaces
    J. M. Carnicer
    E. Mainar
    J. M. Peña
    Advances in Computational Mathematics, 2007, 26 : 121 - 136
  • [2] Six-dimensional Supermultiplets from Bundles on Projective Spaces
    Hahner, Fabian
    Noja, Simone
    Saberi, Ingmar
    Walcher, Johannes
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (02)
  • [3] Rigid six-dimensional h-spaces of constant curvature
    Z. Zakirova
    Theoretical and Mathematical Physics, 2009, 158 : 293 - 299
  • [4] Rigid six-dimensional h-spaces of constant curvature
    Zakirova, Z.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) : 293 - 299
  • [5] Superforms in six-dimensional superspace
    Arias, Cesar
    Linch, William D., III
    Ridgway, Alexander K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [6] A six-dimensional view on twistors
    Sinkovics, A
    Verlinde, E
    PHYSICS LETTERS B, 2005, 608 (1-2) : 142 - 150
  • [7] Six-dimensional Einstein solvmanifolds
    Nikitenko, EV
    Nikonorov, YG
    DOKLADY MATHEMATICS, 2005, 71 (03) : 434 - 437
  • [8] Mechanics in Six-Dimensional Spacetime
    V. S. Barashenkov
    Foundations of Physics, 1998, 28 : 471 - 484
  • [9] Mechanics in six-dimensional spacetime
    Barashenkov, VS
    FOUNDATIONS OF PHYSICS, 1998, 28 (03) : 471 - 484
  • [10] Six-dimensional quadratic forms
    Laghribi, A
    MATHEMATISCHE NACHRICHTEN, 1999, 204 : 125 - 135