Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress

被引:25
|
作者
Xu, Xiangbin [1 ]
Song, Hongmiao [1 ,2 ]
Zhou, Zhenhua [1 ]
Shi, Nongnong [1 ]
Ying, Qicai [1 ]
Wang, Huizhong [1 ]
机构
[1] Hangzhou Normal Univ, Coll Life & Environm Sci, Hangzhou 310036, Zhejiang, Peoples R China
[2] Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Arabidopsis thaliana; Functional expression; Heat shock protein 90; Heat stress; ACTIVATED PROTEIN-KINASE; SHOCK RESPONSE; HSP90; FAMILY; THERMOTOLERANCE; REQUIREMENT; CALCINEURIN; TOLERANCE; CALCIUM; SIGNALS;
D O I
10.1007/s10529-010-0240-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The function of cytosolic AtHsp90.3 was characterized by complementing the Saccharomyces cerevisiae endogenous Hsp90 genes and overexpressing it in Arabidopsis thaliana. Though AtHsp90.3 supported the yeast growth under heat stress, in Arabidopsis, compared to the wild type, the transgenic plants overexpressing cytosolic AtHsp90.3 were more sensitive to heat stress with a lower germination rate and higher mortality but and more tolerant to high Ca2+. Transcriptional expression of heat stress transcription factors, AtHsfA1d, AtHsfA7a and AtHsfB1, and two Hsps, AtHsp101 and AtHsp17, was delayed by constitutive overexpression of cytosolic AtHsp90.3 under heat stress. These results indicate that overexpressing AtHsp90.3 impaired plant tolerance to heat stress and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.
引用
收藏
页码:979 / 987
页数:9
相关论文
共 50 条
  • [41] Multiphasic adaptation of the transcriptome of Saccharomyces cerevisiae to heat stress
    Mensonides, Femke I. C.
    Hellingwerf, Klaas J.
    de Mattos, M. Joost Teixeira
    Brul, Stanley
    FOOD RESEARCH INTERNATIONAL, 2013, 54 (01) : 1103 - 1112
  • [42] The metabolic response of Saccharomyces cerevisiae to continuous heat stress
    Mensonides, FIC
    Schuurmans, JM
    de Mattos, MJT
    Hellingwerf, KJ
    Brul, S
    MOLECULAR BIOLOGY REPORTS, 2002, 29 (1-2) : 103 - 106
  • [43] Structural and Functional Characterization of the Root of Arabidopsis thaliana In Vitro
    I. V. Bulavin
    A. I. Sidyakin
    Biology Bulletin, 2023, 50 : 1241 - 1249
  • [44] Preparation and functional characterization of thylakoids from Arabidopsis thaliana
    Anna Paola Casazza
    Delia Tarantino
    Carlo Soave
    Photosynthesis Research, 2001, 68 : 175 - 180
  • [45] The Metabolic Response of Saccharomyces Cerevisiae to Continuous Heat Stress
    Femke I.C. Mensonides
    J. Merijn Schuurmans
    M. Joost Teixeira de Mattos
    Klaas J. Hellingwerf
    Stanley Brul
    Molecular Biology Reports, 2002, 29 : 103 - 106
  • [46] Analysis of miRNA expression under stress in Arabidopsis thaliana
    Hajdarpasic, Aida
    Ruggenthaler, Pia
    BOSNIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2012, 12 (03) : 169 - 176
  • [47] Ureide metabolism under abiotic stress in Arabidopsis thaliana
    Irani, Solmaz
    Todd, Christopher D.
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 199 : 87 - 95
  • [48] Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions
    Kim, Joo Y.
    Park, Su J.
    Jang, Boseung
    Jung, Che-Hun
    Ahn, Sung J.
    Goh, Chang-Hyo
    Cho, Kyoungwon
    Han, Oksoo
    Kang, Hunseung
    PLANT JOURNAL, 2007, 50 (03): : 439 - 451
  • [49] Functional characterization of a plastid-specific ribosomal protein PSRP2 in Arabidopsis thaliana under abiotic stress conditions
    Xu, Tao
    Lee, Kwanuk
    Gu, Lili
    Kim, Jeong-Il
    Kang, Hunseung
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 73 : 405 - 411
  • [50] Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress
    AL-Quraan, Nisreen A.
    Locy, Robert D.
    Singh, Narendra K.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2010, 48 (08) : 697 - 702