Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress

被引:25
|
作者
Xu, Xiangbin [1 ]
Song, Hongmiao [1 ,2 ]
Zhou, Zhenhua [1 ]
Shi, Nongnong [1 ]
Ying, Qicai [1 ]
Wang, Huizhong [1 ]
机构
[1] Hangzhou Normal Univ, Coll Life & Environm Sci, Hangzhou 310036, Zhejiang, Peoples R China
[2] Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Arabidopsis thaliana; Functional expression; Heat shock protein 90; Heat stress; ACTIVATED PROTEIN-KINASE; SHOCK RESPONSE; HSP90; FAMILY; THERMOTOLERANCE; REQUIREMENT; CALCINEURIN; TOLERANCE; CALCIUM; SIGNALS;
D O I
10.1007/s10529-010-0240-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The function of cytosolic AtHsp90.3 was characterized by complementing the Saccharomyces cerevisiae endogenous Hsp90 genes and overexpressing it in Arabidopsis thaliana. Though AtHsp90.3 supported the yeast growth under heat stress, in Arabidopsis, compared to the wild type, the transgenic plants overexpressing cytosolic AtHsp90.3 were more sensitive to heat stress with a lower germination rate and higher mortality but and more tolerant to high Ca2+. Transcriptional expression of heat stress transcription factors, AtHsfA1d, AtHsfA7a and AtHsfB1, and two Hsps, AtHsp101 and AtHsp17, was delayed by constitutive overexpression of cytosolic AtHsp90.3 under heat stress. These results indicate that overexpressing AtHsp90.3 impaired plant tolerance to heat stress and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.
引用
收藏
页码:979 / 987
页数:9
相关论文
共 50 条
  • [31] Regulation of Arabidopsis thaliana Ku genes at different developmental stages under heat stress
    Liu, Pei Feng
    Wang, Yung Kai
    Chang, Wen Chi
    Chang, Hwan You
    Pan, Rong Long
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2008, 1779 (6-7): : 402 - 407
  • [32] Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana
    Anshu Alok
    Jaspreet Kaur
    Siddharth Tiwari
    Biotechnology Letters, 2020, 42 : 2035 - 2047
  • [33] Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase
    Cordier, H
    Karst, F
    Bergès, T
    PLANT MOLECULAR BIOLOGY, 1999, 39 (05) : 953 - 967
  • [34] Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions
    Jung, Hyun Ju
    Kang, Hunseung
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2007, 45 (10-11) : 805 - 811
  • [35] GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria
    Cao, Juxiang
    Barbosa, Jose M.
    Singh, Narendra
    Locy, Robert D.
    YEAST, 2013, 30 (07) : 279 - 289
  • [36] DNA Demethylation in Response to Heat Stress in Arabidopsis thaliana
    Korotko, Urszula
    Chwialkowska, Karolina
    Sanko-Sawczenko, Izabela
    Kwasniewski, Miroslaw
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (04) : 1 - 20
  • [37] Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase
    Hélène Cordier
    Francis Karst
    Thierry Bergès
    Plant Molecular Biology, 1999, 39 : 953 - 967
  • [38] Structural and Functional Characterization of the Root of Arabidopsis thaliana In Vitro
    Bulavin, I. V.
    Sidyakin, A. I.
    BIOLOGY BULLETIN, 2023, 50 (06) : 1241 - 1249
  • [39] The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae
    Morano, Kevin A.
    Grant, Chris M.
    Moye-Rowley, W. Scott
    GENETICS, 2012, 190 (04) : 1157 - 1195
  • [40] Preparation and functional characterization of thylakoids from Arabidopsis thaliana
    Casazza, AP
    Tarantino, D
    Soave, C
    PHOTOSYNTHESIS RESEARCH, 2001, 68 (02) : 175 - 180