Generalized self-dual Chern-Simons vortices

被引:53
|
作者
Bazeia, D. [1 ]
da Hora, E. [1 ]
dos Santos, C. [2 ,3 ,4 ]
Menezes, R. [2 ,3 ,5 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Porto, Fac Ciencias, Ctr Fis, P-4169007 Oporto, Portugal
[3] Univ Porto, Fac Ciencias, Dept Fis, P-4169007 Oporto, Portugal
[4] Univ Santiago de Compostela, Dept Fis, Santiago De Compostela 15782, Spain
[5] Univ Fed Paraiba, Dept Ciencias Exatas, BR-58297000 Rio Tinto, Paraiba, Brazil
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 12期
关键词
SOLITON-SOLUTIONS; MODELS;
D O I
10.1103/PhysRevD.81.125014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We search for vortices in a generalized Abelian Chern-Simons model with a nonstandard kinetic term. We illustrate our results, plotting and comparing several features of the vortex solution of the generalized model with those of the vortex solution found in the standard Chern-Simons model.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Self-dual vortices in the Abelian Chern-Simons model with two complex scalar fields
    Duan, Yi-Shi
    Zhang, Li-Da
    Liu, Yu-Xiao
    MODERN PHYSICS LETTERS A, 2008, 23 (26) : 2189 - 2198
  • [32] On the existence of self-dual vortices in the abelian Chern-Simons model with two Higgs fields
    Nam, Kwan Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 101 - 110
  • [33] The existence of self-dual vortices in a non-Abelian Φ2 Chern-Simons theory
    Chen, Shouxin
    Wang, Ying
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [34] EXISTENCE OF SOLUTIONS TO A GENERALIZED SELF-DUAL CHERN-SIMONS EQUATION ON FINITE GRAPHS
    Hu, Yuanyang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (01) : 133 - 147
  • [35] An existence theorem for a generalized self-dual Chern-Simons equation and its application
    Chen, Shouxin
    Han, Xiaosen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1555 - 1570
  • [36] Existence of solutions to a generalized self-dual Chern-Simons system on finite graphs
    Chao, Ruixue
    Hou, Songbo
    Sun, Jiamin
    arXiv, 2022,
  • [37] SELF-DUAL CHERN-SIMONS SOLITONS WITH NONCOMPACT GROUPS
    CANGEMI, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (12): : 2945 - 2953
  • [38] Knotted self-dual vortex in generalized Abelian Chern-Simons Higgs field
    Duan, YS
    Zhong, WJ
    Si, TY
    Wang, YQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (01): : 151 - 160
  • [39] The self-dual Chern-Simons CP(N) models
    Kimm, K
    Lee, K
    Lee, T
    PHYSICS LETTERS B, 1996, 380 (3-4) : 303 - 307
  • [40] Relativistic self-dual Chern-Simons systems: A perspective
    Lee, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (06): : 1003 - 1011