EXISTENCE OF SOLUTIONS TO A GENERALIZED SELF-DUAL CHERN-SIMONS EQUATION ON FINITE GRAPHS

被引:0
|
作者
Hu, Yuanyang [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Chern-Simons equation; finite graph; existence; uniqueness; vari- ational method;
D O I
10.4134/JKMS.j230254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G= (V,E) be a connected finite graph. We study the existence of solutions for the following generalized Chern-Simons equationon G triangle u=lambda e(u)(eu-1)(5)+ 4 pi Sigma(N)(s=1)delta ps, where lambda >0,(delta)p(s) is the Dirac mass at the vertexps, andp1,p2,...,pN are arbitrarily chosen distinct vertices on the graph. We show that there exists a critical value lambda such that when lambda >lambda, the generalized Chern-Simons equation has at least two solutions, when lambda=lambda, the generalized Chern-Simons equation has a solution, and when lambda <lambda, the generalized Chern-Simons equation has no solution.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 50 条
  • [1] Existence of solutions to a generalized self-dual Chern-Simons system on finite graphs
    Chao, Ruixue
    Hou, Songbo
    Sun, Jiamin
    arXiv, 2022,
  • [2] An existence theorem for a generalized self-dual Chern-Simons equation and its application
    Chen, Shouxin
    Han, Xiaosen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1555 - 1570
  • [3] Existence theorems for a generalized Chern-Simons equation on finite graphs
    Gao, Jia
    Hou, Songbo
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
  • [4] GENERALIZED SELF-DUAL CHERN-SIMONS VORTICES
    BURZLAFF, J
    CHAKRABARTI, A
    TCHRAKIAN, DH
    PHYSICS LETTERS B, 1992, 293 (1-2) : 127 - 131
  • [5] Generalized self-dual Chern-Simons vortices
    Bazeia, D.
    da Hora, E.
    dos Santos, C.
    Menezes, R.
    PHYSICAL REVIEW D, 2010, 81 (12):
  • [6] TOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS THEORY - EXISTENCE AND APPROXIMATION
    SPRUCK, J
    YANG, YS
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (01): : 75 - 97
  • [7] The existence of generalised self-dual Chern-Simons vortices
    Tchrakian, DH
    Yang, YS
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (04) : 403 - 413
  • [8] The existence of multi-vortices for a generalized self-dual Chern-Simons model
    Han, Xiaosen
    NONLINEARITY, 2013, 26 (03) : 805 - 835
  • [9] A GENERALIZED SELF-DUAL CHERN-SIMONS HIGGS THEORY
    YANG, YS
    LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (03) : 179 - 191
  • [10] Uniqueness of topological solutions of self-dual Chern-Simons equation with collapsing vortices
    Huang, Genggeng
    Lin, Chang-Shou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1819 - 1840