Two-dimensional Yang-Mills theory and moduli spaces of holomorphic differentials

被引:6
|
作者
Griguolo, L
Seminara, D
Szabo, RJ
机构
[1] Univ Parma, Dipartimento Fis, INFN, Grp Collegato Parma, I-43100 Parma, Italy
[2] Polo Sci Univ Florence, Dipartimento Fis, Ist Nazl Fis Nucl, Sez Firenz, I-50019 Sesto Fiorentino, Italy
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1016/j.physletb.2004.09.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe and solve a double scaling limit of large N Yang-Mills theory on a two-dimensional torus. We find the exact strong-coupling expansion in this limit and describe its relation to the conventional Gross-Taylor series. The limit retains only the chiral sector of the full gauge theory and the coefficients of the expansion determine the asymptotic Hurwitz numbers, in the limit of infinite winding number, for simple branched coverings of a torus. These numbers are computed exactly from the gauge theory vacuum amplitude and shown to coincide with the volumes of the principal moduli spaces of holomorphic differentials. The string theory interpretation of the double scaling limit is also described. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 50 条
  • [21] Two-dimensional Yang-Mills theory on recursive infinite genus surfaces
    Dushyant Kumar
    Journal of High Energy Physics, 2014
  • [22] Two-dimensional super Yang-Mills theory investigated with improved resolution
    Hiller, JR
    Pinsky, S
    Salwen, N
    Trittmann, U
    PHYSICAL REVIEW D, 2005, 71 (08): : 1 - 13
  • [23] Phase structure of the generalized two-dimensional Yang-Mills theory on sphere
    Alimohammadi, M
    Tofighi, A
    EUROPEAN PHYSICAL JOURNAL C, 1999, 8 (04): : 711 - 717
  • [24] On the restoration of supersymmetry in twisted two-dimensional lattice Yang-Mills theory
    Catterall, Simon
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [25] Phase structure of the generalized two-dimensional Yang-Mills theory on sphere
    Alimohammadi M.
    Tofighi A.
    The European Physical Journal C - Particles and Fields, 1999, 8 (4): : 711 - 717
  • [26] Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory
    Koekenyesi, Zoltan
    Sinkovics, Annamaria
    Szabo, Richard J.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (11-12): : 823 - 853
  • [27] The Large-N Limit for Two-Dimensional Yang-Mills Theory
    Hall, Brian C.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (03) : 789 - 828
  • [28] Totally geodesic boundaries of Yang-Mills moduli spaces
    Groisser, D
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (02): : 221 - 276
  • [29] Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory
    Donnelly, William
    Timmerman, Sydney
    Valdes-Meller, Nicolas
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [30] Two-dimensional Yang-Mills theory in the leading 1/N expansion revisited
    Bassetto, A
    Nardelli, G
    Shuvaev, A
    NUCLEAR PHYSICS B, 1997, 495 (1-2) : 451 - 460