Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

被引:1
|
作者
Koekenyesi, Zoltan [1 ]
Sinkovics, Annamaria [1 ]
Szabo, Richard J. [2 ,3 ,4 ]
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, MTA ELTE Theoret Res Grp, Pazmany S 1-A, H-1117 Budapest, Hungary
[2] Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[4] Higgs Ctr Theoret Phys, Edinburgh, Midlothian, Scotland
来源
基金
英国科学技术设施理事会; 欧洲研究理事会;
关键词
REFINED CHERN-SIMONS; BRANCHED-COVERINGS; HECKE ALGEBRAS; MODULI SPACES; WILSON LOOPS; REPRESENTATIONS; STRINGS; QCD;
D O I
10.1002/prop.201600087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new beta-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit beta = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and beta-ensembles of matrix models arising in refined topological string theory.
引用
收藏
页码:823 / 853
页数:31
相关论文
共 50 条