Machine learning at the energy and intensity frontiers of particle physics

被引:298
|
作者
Radovic, Alexander [1 ]
Williams, Mike [2 ]
Rousseau, David [3 ]
Kagan, Michael [4 ]
Bonacorsi, Daniele [5 ,6 ]
Himmel, Alexander [7 ]
Aurisano, Adam [8 ]
Terao, Kazuhiro [4 ]
Wongjirad, Taritree [9 ]
机构
[1] Coll William & Mary, Williamsburg, VA 23185 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[5] Univ Bologna, Bologna, Italy
[6] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[7] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[8] Univ Cincinnati, Cincinnati, OH USA
[9] Tufts Univ, Medford, MA 02155 USA
关键词
ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1038/s41586-018-0361-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [31] Bias and priors in machine learning calibrations for high energy physics
    Gambhir, Rikab
    Nachman, Benjamin
    Thaler, Jesse
    PHYSICAL REVIEW D, 2022, 106 (03)
  • [32] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [33] Elementary Particle Physics at the Intensity Frontier
    White, Herman B.
    WOMEN IN PHYSICS, 2013, 1517 : 196 - 196
  • [34] Frontiers of Low Energy Neutrino Physics and Astrophysics
    Ranucci, G.
    TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP2009), 2010, 203
  • [35] A snapshot of the frontiers of fairness in machine learning
    Chouldechova A.
    Roth A.
    Communications of the ACM, 2020, 63 (05) : 82 - 89
  • [36] Exploring the Frontiers of Machine Learning in Education
    Li, Jiayi
    XRDS: Crossroads, 2024, 31 (01):
  • [37] A simple guide from machine learning outputs to statistical criteria in particle physics
    Khosa, Charanjit Kaur
    Sanz, Veronica
    Soughton, Michael
    SCIPOST PHYSICS CORE, 2022, 5 (04):
  • [38] FPGA-Accelerated Machine Learning Inference as a Service for Particle Physics Computing
    Duarte J.
    Harris P.
    Hauck S.
    Holzman B.
    Hsu S.-C.
    Jindariani S.
    Khan S.
    Kreis B.
    Lee B.
    Liu M.
    Lončar V.
    Ngadiuba J.
    Pedro K.
    Perez B.
    Pierini M.
    Rankin D.
    Tran N.
    Trahms M.
    Tsaris A.
    Versteeg C.
    Way T.W.
    Werran D.
    Wu Z.
    Computing and Software for Big Science, 2019, 3 (1)
  • [39] Probing the frontiers of particle physics with tabletop-scale experiments
    DeMille, David
    Doyle, John M.
    Sushkov, Alexander O.
    SCIENCE, 2017, 357 (6355) : 990 - 994
  • [40] Frontiers of elementary particle physics, the standard model and beyond - Preface
    Komamiya, Sachio
    Kuno, Yoshitaka
    Okada, Yasuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (11) : I - I