Machine learning at the energy and intensity frontiers of particle physics

被引:298
|
作者
Radovic, Alexander [1 ]
Williams, Mike [2 ]
Rousseau, David [3 ]
Kagan, Michael [4 ]
Bonacorsi, Daniele [5 ,6 ]
Himmel, Alexander [7 ]
Aurisano, Adam [8 ]
Terao, Kazuhiro [4 ]
Wongjirad, Taritree [9 ]
机构
[1] Coll William & Mary, Williamsburg, VA 23185 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[5] Univ Bologna, Bologna, Italy
[6] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[7] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[8] Univ Cincinnati, Cincinnati, OH USA
[9] Tufts Univ, Medford, MA 02155 USA
关键词
ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1038/s41586-018-0361-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [21] High?energy nuclear physics meets machine learning
    Wan?Bing He
    Yu?Gang Ma
    Long?Gang Pang
    Hui?Chao Song
    Kai Zhou
    NuclearScienceandTechniques, 2023, 34 (06) : 84 - 116
  • [22] Machine Learning for Columnar High Energy Physics Analysis
    Kauffman, Elliott
    Held, Alexander
    Shadura, Oksana
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [23] Quantum machine learning for particle physics using a variational quantum classifier
    Blance, Andrew
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [24] Quantum machine learning for particle physics using a variational quantum classifier
    Andrew Blance
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [25] Estimation of Machine Learning model uncertainty in particle physics event classifiers
    Vazquez-Escobar, Julia
    Hernandez, J. M.
    Cardenas-Montes, Miguel
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 268
  • [26] Quantum machine learning and its supremacy in high energy physics
    Sharma, Kapil K.
    MODERN PHYSICS LETTERS A, 2021, 36 (02)
  • [27] High-energy nuclear physics meets machine learning
    Wan-Bing He
    Yu-Gang Ma
    Long-Gang Pang
    Hui-Chao Song
    Kai Zhou
    Nuclear Science and Techniques, 2023, 34
  • [28] High-energy nuclear physics meets machine learning
    He, Wan-Bing
    Ma, Yu-Gang
    Pang, Long-Gang
    Song, Hui-Chao
    Zhou, Kai
    NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (06)
  • [29] Studying high-energy nuclear physics with machine learning
    Pang, Long-Gang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2024, 33 (06):
  • [30] Machine Learning in High Energy Physics Community White Paper
    Albertsson, Kim
    Altoe, Piero
    Anderson, Dustin
    Andrews, Michael
    Espinosa, Juan Pedro Araque
    Aurisano, Adam
    Basara, Laurent
    Bevan, Adrian
    Bhimji, Wahid
    Bonacorsi, Daniele
    Calafiura, Paolo
    Campanelli, Mario
    Capps, Louis
    Carminati, Federico
    Carrazza, Stefano
    Childers, Taylor
    Coniavitis, Elias
    Cranmer, Kyle
    David, Claire
    Davis, Douglas
    Duarte, Javier
    Erdmann, Martin
    Eschle, Jonas
    Farbin, Amir
    Feickert, Matthew
    Castro, Nuno Filipe
    Fitzpatrick, Conor
    Floris, Michele
    Forti, Alessandra
    Garra-Tico, Jordi
    Gemmler, Jochen
    Girone, Maria
    Glaysher, Paul
    Gleyzer, Sergei
    Gligorov, Vladimir
    Golling, Tobias
    Graw, Jonas
    Gray, Lindsey
    Greenwood, Dick
    Hacker, Thomas
    Harvey, John
    Hegner, Benedikt
    Heinrich, Lukas
    Hooberman, Ben
    Junggeburth, Johannes
    Kagan, Michael
    Kane, Meghan
    Kanishchev, Konstantin
    Karpinski, Przemyslaw
    Kassabov, Zahari
    18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085