Machine learning at the energy and intensity frontiers of particle physics

被引:298
|
作者
Radovic, Alexander [1 ]
Williams, Mike [2 ]
Rousseau, David [3 ]
Kagan, Michael [4 ]
Bonacorsi, Daniele [5 ,6 ]
Himmel, Alexander [7 ]
Aurisano, Adam [8 ]
Terao, Kazuhiro [4 ]
Wongjirad, Taritree [9 ]
机构
[1] Coll William & Mary, Williamsburg, VA 23185 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, LAL,IN2P3, Orsay, France
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[5] Univ Bologna, Bologna, Italy
[6] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[7] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[8] Univ Cincinnati, Cincinnati, OH USA
[9] Tufts Univ, Medford, MA 02155 USA
关键词
ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1038/s41586-018-0361-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [1] Machine learning at the energy and intensity frontiers of particle physics
    Alexander Radovic
    Mike Williams
    David Rousseau
    Michael Kagan
    Daniele Bonacorsi
    Alexander Himmel
    Adam Aurisano
    Kazuhiro Terao
    Taritree Wongjirad
    Nature, 2018, 560 : 41 - 48
  • [2] Machine Learning in Particle Physics
    Purohit, Milind, V
    BIG DATA ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2023, 2024, 14516 : 128 - 138
  • [3] Frontiers of particle physics
    Okun, L
    PROCEEDINGS OF THE 1995 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 1996, : 45 - 47
  • [4] Explainable machine learning of the underlying physics of high-energy particle collisions
    Lai, Yue Shi
    Neill, Duff
    Ploskon, Mateusz
    Ringer, Felix
    PHYSICS LETTERS B, 2022, 829
  • [5] FRONTIERS OF PARTICLE BEAM PHYSICS
    SESSLER, AM
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (06): : 1325 - 1330
  • [6] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):
  • [7] Machine learning for anomaly detection in particle physics
    Belis V.
    Odagiu P.
    Aarrestad T.K.
    Reviews in Physics, 2024, 12
  • [8] JUNIPR: a framework for unsupervised machine learning in particle physics
    Andreassen, Anders
    Feige, Ilya
    Frye, Christopher
    Schwartz, Matthew D.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (02):
  • [9] Lessons on interpretable machine learning from particle physics
    Christophe Grojean
    Ayan Paul
    Zhuoni Qian
    Inga Strümke
    Nature Reviews Physics, 2022, 4 : 284 - 286
  • [10] Lessons on interpretable machine learning from particle physics
    Grojean, Christophe
    Paul, Ayan
    Qian, Zhuoni
    Strumke, Inga
    NATURE REVIEWS PHYSICS, 2022, 4 (05) : 284 - 286