On random sets connected to the partial records of Poisson point process

被引:4
|
作者
Rivero, VM
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Paris 07, F-75252 Paris 05, France
关键词
Poisson point process; extremal process; regenerative sets; subordinators; fractal dimensions;
D O I
10.1023/A:1022247025107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Random intervals are constructed from partial records in a Poisson point process in] 0,infinity[x] 0,infinity[. These are used to cover partially [ 0,infinity[; the purpose of this work is to study the random set R that is left uncovered. We show that R enjoys the regenerative property and identify its distribution in terms of the characteristics of the Poisson point process. As an application we show that R is almost surely a fractal set and we calculate its dimension.
引用
收藏
页码:277 / 307
页数:31
相关论文
共 50 条
  • [41] Four-Connected Triangulations of Planar Point Sets
    Diwan, Ajit Arvind
    Ghosh, Subir Kumar
    Roy, Bodhayan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 713 - 746
  • [42] Non-separated cuttings of connected point sets
    Whyburn, G. T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) : 444 - 454
  • [43] ON THE MEASUREMENTS OF POISSON PULSE RANDOM PROCESS MOMENTS
    ZACHEPITSKAYA, LP
    KLIBANOVA, IM
    RADIOTEKHNIKA I ELEKTRONIKA, 1981, 26 (03): : 570 - 577
  • [44] Random A-permutations: Convergence to a Poisson process
    A. L. Yakymiv
    Mathematical Notes, 2007, 81 : 840 - 846
  • [45] Certain theorems relating to plane connected point sets
    Mullikin, Anna M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1922, 24 (1-4) : 144 - 162
  • [46] CONVEX HULLS OF PERTURBED RANDOM POINT SETS
    Calka, Pierre
    Yukich, J. E.
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (04): : 1598 - 1632
  • [47] Large convex holes in random point sets
    Balogh, Jozsef
    Gonzalez-Aguilar, Hernan
    Salazar, Gelasio
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (06): : 725 - 733
  • [48] Maximal and Convex Layers of Random Point Sets
    He, Meng
    Nguyen, Cuong P.
    Zeh, Norbert
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 597 - 610
  • [49] Oriented distance point of view on random sets
    Dambrine, M.
    Puig, B.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [50] A PERSISTENCY PROBLEM CONNECTED WITH A POINT PROCESS
    ELFVING, G
    JOURNAL OF APPLIED PROBABILITY, 1967, 4 (01) : 77 - &