On random sets connected to the partial records of Poisson point process

被引:4
|
作者
Rivero, VM
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Paris 07, F-75252 Paris 05, France
关键词
Poisson point process; extremal process; regenerative sets; subordinators; fractal dimensions;
D O I
10.1023/A:1022247025107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Random intervals are constructed from partial records in a Poisson point process in] 0,infinity[x] 0,infinity[. These are used to cover partially [ 0,infinity[; the purpose of this work is to study the random set R that is left uncovered. We show that R enjoys the regenerative property and identify its distribution in terms of the characteristics of the Poisson point process. As an application we show that R is almost surely a fractal set and we calculate its dimension.
引用
收藏
页码:277 / 307
页数:31
相关论文
共 50 条
  • [31] MOMENTS OF SOME RANDOM-VARIABLES CONNECTED WITH RECORDS
    NEVZOROV, VB
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1987, (02): : 33 - 37
  • [32] TESTING HYPOTHESIS THAT A POINT PROCESS IS POISSON
    DAVIES, RB
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (04) : 724 - 746
  • [33] Approximation of a sample by a poisson point process
    Zaitsev A.Y.
    Journal of Mathematical Sciences, 2005, 128 (1) : 2556 - 2563
  • [34] THE FAVORITE POINT OF A POISSON-PROCESS
    KHOSHNEVISAN, D
    LEWIS, TM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 57 (01) : 19 - 38
  • [35] Time series with Poisson point process
    Ghazal, MA
    Aly, AM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (01) : 149 - 157
  • [36] Minimum connected dominating sets of random cubic graphs
    Duckworth, W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [37] Threshold functions and Poisson convergence for systems of equations in random sets
    Juanjo Rué
    Christoph Spiegel
    Ana Zumalacárregui
    Mathematische Zeitschrift, 2018, 288 : 333 - 360
  • [38] Threshold functions and Poisson convergence for systems of equations in random sets
    Rue, Juanjo
    Spiegel, Christoph
    Zumalacarregui, Ana
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (1-2) : 333 - 360
  • [39] Four-Connected Triangulations of Planar Point Sets
    Ajit Arvind Diwan
    Subir Kumar Ghosh
    Bodhayan Roy
    Discrete & Computational Geometry, 2015, 53 : 713 - 746
  • [40] Random A-permutations:: Convergence to a Poisson process
    Yakymiv, A. L.
    MATHEMATICAL NOTES, 2007, 81 (5-6) : 840 - 846