2D Single-Atom Fe-N-C Catalyst Derived from a Layered Complex as an Oxygen Reduction Catalyst for PEMFCs

被引:14
|
作者
Yang, Shuting [1 ,2 ]
Liu, Xili [1 ,2 ]
Niu, Fuquan [2 ,3 ]
Wang, Luyan [1 ,2 ]
Su, Keke [1 ,2 ]
Liu, Wenfeng [2 ,3 ]
Dong, Hongyu [1 ,2 ]
Yue, Hongyun [1 ,2 ]
Yin, Yanhong [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
[2] Collaborat Innovat Ctr Henan Prov Mot Power & Key, Xinxiang 453007, Peoples R China
[3] Henan Normal Univ, Sch Phys, Xinxiang 453007, Peoples R China
关键词
oxygen reduction reaction; proton exchange membrane fuel cells; Fe-N-C single-atom catalysts; 2D nanosheets; coordination engineering; ACTIVE-SITES; NANOMATERIALS; PERFORMANCE;
D O I
10.1021/acsaem.2c01290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe single-atom catalysts of oxygen reduction reaction (ORR) are restricted by the agglomeration during the synthesis process and inferior stability, especially in acidic conditions. An efficient synthesis strategy is urgently needed to alleviate these disadvantages. In this work, a two-dimensional (2D) single-atom Fe-N-C catalyst derived from a layered complex was designed and synthesized for the ORR. Fe single atoms dispersed on 2D hierarchical porous N-doped carbon nanosheets (Fe-N- C) were derived from a layered complex through the coordination of Fe3+ and benzidine hydrochloride. The unique 2D hierarchical porous nanosheets with a special edge effect can not only provide a large specific surface area and promote the mass transfer of ORR but also facilitate the affinity of Fe single atoms. Furthermore, the well-distributed Fe single atoms and Fe-N-x-C structure can increase the utilization rate of metal atoms and enhance the catalytic activity of materials. As expected, the catalyst shows superior ORR performance and excellent electrochemical stability.
引用
收藏
页码:8791 / 8799
页数:9
相关论文
共 50 条
  • [41] Direct transformation of raw biomass into a Fe-Nx-C single-atom catalyst for efficient oxygen reduction reaction
    Wu, Danyang
    Liu, Wei
    Hu, Jinwen
    Zhu, Chao
    Jing, Hongyu
    Zhang, Jiangwei
    Hao, Ce
    Shi, Yantao
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (07) : 3093 - 3098
  • [42] A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes
    Tang, Feng
    Lei, Haitao
    Wang, Shujun
    Wang, Huixin
    Jin, Zhaoxia
    NANOSCALE, 2017, 9 (44) : 17364 - 17370
  • [43] High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media
    Tian, Hao
    Song, Ailing
    Zhang, Peng
    Sun, Kaian
    Wang, Jingjing
    Sun, Bing
    Fan, Qiaohui
    Shao, Guangjie
    Chen, Chen
    Liu, Hao
    Li, Yadong
    Wang, Guoxiu
    ADVANCED MATERIALS, 2023, 35 (14)
  • [44] Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction
    Song, Ailing
    Tian, Hao
    Yang, Wang
    Yang, Wu
    Xie, Yuhan
    Liu, Hao
    Wang, Guoxiu
    Shao, Guangjie
    JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 630 - 636
  • [45] Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction
    Ailing Song
    Hao Tian
    Wang Yang
    Wu Yang
    Yuhan Xie
    Hao Liu
    Guoxiu Wang
    Guangjie Shao
    Journal of Energy Chemistry , 2022, (02) : 630 - 636
  • [46] Unveiling the Proton-Feeding Effect in Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced CO2 Electroreduction
    Chen, Shanyong
    Li, Xiaoqing
    Kao, Cheng-Wei
    Luo, Tao
    Chen, Kejun
    Fu, Junwei
    Ma, Chao
    Li, Hongmei
    Li, Ming
    Chan, Ting-Shan
    Liu, Min
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
  • [47] A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range
    Yang, Haoqi
    Li, Zhiyuan
    Kou, Shuqing
    Lu, Guolong
    Liu, Zhenning
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
  • [48] Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A
    Huang, Zhikun
    Yu, Haojie
    Wang, Li
    Wang, Mingyuan
    Liu, Xiaowei
    Shen, Di
    Shen, Sudan
    Ren, Shuning
    Lin, Tengfei
    Lei, Shuangying
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 305
  • [49] Laser driven generation of single atom Fe-N-C catalysts for the oxygen reduction reaction
    Madrid, Ainhoa
    Tolosana-Moranchel, Alvaro
    Garcia, Alvaro
    Rojas, Sergio
    Bartolome, Fernando
    Pakrieva, Ekaterina
    Simonelli, Laura
    Martinez, Gema
    Hueso, Jose L.
    Santamaria, Jesus
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [50] Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO2 Reduction
    Li, Ke
    Zhang, Shengbo
    Zhang, Xiuli
    Liu, Shuang
    Jiang, Haosong
    Jiang, Taoli
    Shen, Chunyue
    Yu, Yi
    Chen, Wei
    NANO LETTERS, 2022, 22 (04) : 1557 - 1565