2D Single-Atom Fe-N-C Catalyst Derived from a Layered Complex as an Oxygen Reduction Catalyst for PEMFCs

被引:14
|
作者
Yang, Shuting [1 ,2 ]
Liu, Xili [1 ,2 ]
Niu, Fuquan [2 ,3 ]
Wang, Luyan [1 ,2 ]
Su, Keke [1 ,2 ]
Liu, Wenfeng [2 ,3 ]
Dong, Hongyu [1 ,2 ]
Yue, Hongyun [1 ,2 ]
Yin, Yanhong [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
[2] Collaborat Innovat Ctr Henan Prov Mot Power & Key, Xinxiang 453007, Peoples R China
[3] Henan Normal Univ, Sch Phys, Xinxiang 453007, Peoples R China
关键词
oxygen reduction reaction; proton exchange membrane fuel cells; Fe-N-C single-atom catalysts; 2D nanosheets; coordination engineering; ACTIVE-SITES; NANOMATERIALS; PERFORMANCE;
D O I
10.1021/acsaem.2c01290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe single-atom catalysts of oxygen reduction reaction (ORR) are restricted by the agglomeration during the synthesis process and inferior stability, especially in acidic conditions. An efficient synthesis strategy is urgently needed to alleviate these disadvantages. In this work, a two-dimensional (2D) single-atom Fe-N-C catalyst derived from a layered complex was designed and synthesized for the ORR. Fe single atoms dispersed on 2D hierarchical porous N-doped carbon nanosheets (Fe-N- C) were derived from a layered complex through the coordination of Fe3+ and benzidine hydrochloride. The unique 2D hierarchical porous nanosheets with a special edge effect can not only provide a large specific surface area and promote the mass transfer of ORR but also facilitate the affinity of Fe single atoms. Furthermore, the well-distributed Fe single atoms and Fe-N-x-C structure can increase the utilization rate of metal atoms and enhance the catalytic activity of materials. As expected, the catalyst shows superior ORR performance and excellent electrochemical stability.
引用
收藏
页码:8791 / 8799
页数:9
相关论文
共 50 条
  • [31] Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source
    Zhao, Yuan
    Wang, Quan
    Hu, Rongrong
    Liu, Wenqiang
    Zhang, Xiaojuan
    Wang, Wei
    Alonso-Vante, Nicolas
    Zhu, Dongdong
    FRONTIERS IN ENERGY, 2024, : 841 - 849
  • [32] Impact of Active Site Density on Oxygen Reduction Reactions Using Monodispersed Fe-N-C Single-Atom Catalysts
    Han, Yulan
    Li, Qin-Kun
    Ye, Ke
    Luo, Yi
    Jiang, Jun
    Zhang, Guozhen
    ACS Applied Materials and Interfaces, 2020, 12 (13): : 15271 - 15278
  • [33] Role of atomic substitution in first coordination shell of Fe-N-C single atom catalyst towards oxygen reduction reaction: A theoretical study
    Singh, Monika
    Das, Dipak Kumar
    Kumar, Anuj
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1149 - 1156
  • [34] Synergistic spin-valence catalysis mechanism in oxygen reduction reactions on Fe-N-C single-atom catalysts
    Wu, Daoxiong
    Zhuo, Zhiwen
    Song, Yiming
    Rao, Peng
    Luo, Junming
    Li, Jing
    Deng, Peilin
    Yang, Jinlin
    Wu, Xiaojun
    Tian, Xinlong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (25) : 13502 - 13509
  • [35] Impact of Active Site Density on Oxygen Reduction Reactions Using Monodispersed Fe-N-C Single-Atom Catalysts
    Han, Yulan
    Li, Qin-Kun
    Ye, Ke
    Luo, Yi
    Jiang, Jun
    Zhang, Guozhen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15271 - 15278
  • [36] Single-Atom Nanozyme Based on Nanoengineered Fe-N-C Catalyst with Superior Peroxidase-Like Activity for Ultrasensitive Bioassays
    Cheng, Nan
    Li, Jin-Cheng
    Liu, Dong
    Lin, Yuehe
    Du, Dan
    SMALL, 2019, 15 (48)
  • [37] Theoretical Insights into the Selectivity of Single-Atom Fe-N-C Catalysts for Electrochemical NO x Reduction
    Tan, Yao
    Fu, Junwei
    Luo, Tao
    Liu, Kang
    Liu, Min
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (06) : 4937 - 4944
  • [38] Mesopore-Rich Fe-N-C Catalyst with FeN4-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media
    Peng, Lishan
    Yang, Jiao
    Yang, Yuqi
    Qian, Fangren
    Wang, Qing
    Sun-Waterhouse, Dongxiao
    Shang, Lu
    Zhang, Tierui
    Waterhouse, Geoffrey I. N.
    ADVANCED MATERIALS, 2022, 34 (29)
  • [39] Theoretical design of bifunctional single-atom catalyst over g-C2N2 for oxygen evolution and reduction reactions
    Wu, Xiao-Kuan
    Gao, Junan
    Hong, Zhao
    Lei, Zhigang
    Yun, Jimmy
    Zhang, Jie
    Xia, Guang-Jie
    CATALYSIS TODAY, 2024, 433
  • [40] Manipulating the spin state to activate the atomically dispersed Fe-N-C catalyst for oxygen reduction
    Liu, Fan
    Shi, Chengxiang
    Pan, Lun
    Huang, Zhen-Feng
    Zhang, Xiangwen
    Zou, Ji-Jun
    EES CATALYSIS, 2023, 1 (04): : 562 - 570