Conditional likelihood estimators for hidden Markov models and stochastic volatility models

被引:4
|
作者
Genon-Catalot, V [1 ]
Jeantheau, T [1 ]
Laredo, C [1 ]
机构
[1] INRA, Lab Biometrie, F-78350 Jouy En Josas, France
关键词
conditional likelihood; diffusion processes; discrete time observations; hidden Markov models; parametric inference; stochastic volatility; ASYMPTOTIC NORMALITY; CONSISTENCY; PARAMETER;
D O I
10.1111/1467-9469.00332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a new contrast process for parametric inference of general hidden Markov models, when the hidden chain has a non-compact state space. This contrast is based on the conditional likelihood approach, often used for ARCH-type models. We prove the strong consistency of the conditional likelihood estimators under appropriate conditions. The method is applied to the Kalman filter (for which this contrast and the exact likelihood lead to asymptotically equivalent estimators) and to the. discretely observed stochastic volatility models.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 50 条
  • [41] QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTIC VOLATILITY MODELS
    RUIZ, E
    JOURNAL OF ECONOMETRICS, 1994, 63 (01) : 289 - 306
  • [42] CONDITIONAL ITERATIVE DECODING OF TWO DIMENSIONAL HIDDEN MARKOV MODELS
    Sargin, M. E.
    Altinok, A.
    Rose, K.
    Manjunath, B. S.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2552 - 2555
  • [43] The hierarchical-likelihood approach to autoregressive stochastic volatility models
    Lee, Woojoo
    Lim, Johan
    Lee, Youngjo
    del Castillo, Joan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 248 - 260
  • [44] Likelihood-based inference for asymmetric stochastic volatility models
    Bartolucci, F
    De Luca, G
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (03) : 445 - 449
  • [45] Simulated maximum likelihood in autoregressive models with stochastic volatility errors
    Choi, Jieun
    Chen, Bei
    Abraham, Bovas
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2015, 31 (02) : 148 - 159
  • [46] Crandem systems-conditional random field acoustic models for hidden Markov models
    Fosler-Lussier, Eric
    Morris, Jeremy
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4049 - 4052
  • [47] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316
  • [48] Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets
    Abanto-Valle, Carlos A.
    Rodriguez, Gabriel
    Castro Cepero, Luis M.
    Garrafa-Aragon, Hernan B.
    COMPUTATIONAL ECONOMICS, 2024, 64 (03) : 1775 - 1801
  • [50] An infinite hidden Markov model with stochastic volatility
    Li, Chenxing
    Maheu, John M.
    Yang, Qiao
    JOURNAL OF FORECASTING, 2024, 43 (06) : 2187 - 2211