Conditional likelihood estimators for hidden Markov models and stochastic volatility models

被引:4
|
作者
Genon-Catalot, V [1 ]
Jeantheau, T [1 ]
Laredo, C [1 ]
机构
[1] INRA, Lab Biometrie, F-78350 Jouy En Josas, France
关键词
conditional likelihood; diffusion processes; discrete time observations; hidden Markov models; parametric inference; stochastic volatility; ASYMPTOTIC NORMALITY; CONSISTENCY; PARAMETER;
D O I
10.1111/1467-9469.00332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a new contrast process for parametric inference of general hidden Markov models, when the hidden chain has a non-compact state space. This contrast is based on the conditional likelihood approach, often used for ARCH-type models. We prove the strong consistency of the conditional likelihood estimators under appropriate conditions. The method is applied to the Kalman filter (for which this contrast and the exact likelihood lead to asymptotically equivalent estimators) and to the. discretely observed stochastic volatility models.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 50 条
  • [31] MAXIMUM LIKELIHOOD ESTIMATION IN HIDDEN MARKOV MODELS WITH INHOMOGENEOUS NOISE
    Diehn, Manuel
    Munk, Axel
    Rudolf, Daniel
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 (492-523) : 492 - 523
  • [32] CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR FOR GENERAL HIDDEN MARKOV MODELS
    Douc, Randal
    Moulines, Eric
    Olsson, Jimmy
    van Handel, Ramon
    ANNALS OF STATISTICS, 2011, 39 (01): : 474 - 513
  • [33] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [34] Nonparametric identification and maximum likelihood estimation for hidden Markov models
    Alexandrovich, G.
    Holzmann, H.
    Leister, A.
    BIOMETRIKA, 2016, 103 (02) : 423 - 434
  • [35] Asymptotics of the maximum likelihood estimator for general hidden Markov models
    Douc, R
    Matias, C
    BERNOULLI, 2001, 7 (03) : 381 - 420
  • [36] Convergence rates of the Maximum Likelihood estimator of Hidden Markov Models
    Mevel, L
    Finesso, L
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4691 - 4696
  • [37] Penalized maximum likelihood estimation for Gaussian hidden Markov models
    Alexandrovich, Grigory
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 6133 - 6148
  • [38] Evaluation of relevance of stochastic parameters on Hidden Markov Models
    Robles, B.
    Avila, M.
    Duculty, F.
    Vrignat, P.
    Kratz, F.
    ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 428 - 435
  • [39] Stochastic Gradient MCMC Methods for Hidden Markov Models
    Ma, Yi-An
    Foti, Nicholas J.
    Fox, Emily B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [40] Algebraic geometry and stochastic complexity of hidden Markov models
    Yamazaki, K
    Watanabe, S
    NEUROCOMPUTING, 2005, 69 (1-3) : 62 - 84