The two-dimensional elasticity of a chiral hinge lattice metamaterial

被引:46
|
作者
Zhang, Wenjiao [1 ,2 ]
Neville, Robin [2 ]
Zhang, Dayi [2 ,3 ]
Scarpa, Fabrizio [2 ]
Wang, Lifeng [4 ]
Lakes, Roderic [5 ]
机构
[1] Northeast Agr Univ, Sch Engn, 59 Mucai St, Harbin 150030, Heilongjiang, Peoples R China
[2] Univ Bristol, Bristol Composites Inst ACCIS, Bristol BS8 1TR, Avon, England
[3] Beijng Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[4] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA
[5] Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA
基金
欧盟地平线“2020”; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Lattice; Metamaterial; Chiral; Elasticity; Tension; Shear; NEGATIVE POISSONS RATIO; AUXETIC MECHANICAL METAMATERIALS; HONEYCOMBS; BEHAVIOR; HOMOGENIZATION; CONSTANTS; SHAPE; FOAM; CUT;
D O I
10.1016/j.ijsolstr.2018.02.027
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a lattice structure defined by patterns of slits that follow a rotational symmetry (chiral) configuration. The chiral pattern of the slits creates a series of hinges that produce deformation mechanisms for the lattice due to bending of the ribs, leading to a marginal negative Poisson's ratio. The engineering constants are modeled using theoretical and numerical Finite Element simulations. The results are bench-marked with experimental data obtained from uniaxial and off-axis tensile tests, with an overall excellent agreement. The chiral hinge lattice is almost one order of magnitude more compliant than other configurations with patterned slits and - in contrast to other chiral micropolar media - exhibits an in-plane shear modulus that closely obeys the relation between Young's modulus and Poisson's ratio in homogeneous isotropic linear elastic materials. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [41] Consistent Two-Dimensional Chiral Gravity
    Smailagic, A.
    Spallucci, E.
    International Journal of Modern Physics A, 12 (21):
  • [42] VIBRATIONS OF A TWO-DIMENSIONAL LATTICE.
    Kesavasamy, K.
    Krishnamurthy, N.
    Indian Journal of Pure and Applied Physics, 1979, 17 (02): : 73 - 79
  • [43] Pfaffianization of the two-dimensional Toda lattice
    Hu, XB
    Zhao, JX
    Tam, HW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) : 256 - 261
  • [44] Two-dimensional disordered lattice solitons
    Efremidis, Nikolaos K.
    OPTICS LETTERS, 2009, 34 (05) : 596 - 598
  • [45] Ferrovalleytricity in a two-dimensional antiferromagnetic lattice
    Chai, Shuyan
    Feng, Yangyang
    Dai, Ying
    Huang, Baibiao
    Kou, Liangzhi
    Ma, Yandong
    MATERIALS HORIZONS, 2024, 11 (23) : 6082 - 6088
  • [46] DIFFRACTION ON THE TWO-DIMENSIONAL SQUARE LATTICE
    Bhat, H. S.
    Osting, B.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) : 1389 - 1406
  • [47] SUPERSYMMETRIC TWO-DIMENSIONAL TODA LATTICE
    OLSHANETSKY, MA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (01) : 63 - 76
  • [48] Intrinsic triferroicity in a two-dimensional lattice
    Shen, Shiying
    Xu, Xilong
    Huang, Baibiao
    Kou, Liangzhi
    Dai, Ying
    Ma, Yandong
    PHYSICAL REVIEW B, 2021, 103 (14)
  • [49] THE ANISOTROPIC CHARACTERS IN TWO-DIMENSIONAL LATTICE
    Yang, Yang
    Lin, Mai-Mai
    Duan, Wen-Shan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (07):
  • [50] STATISTICS OF TWO-DIMENSIONAL AMORPHOUS LATTICE
    KAWAMURA, H
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (02): : 352 - 365