The two-dimensional elasticity of a chiral hinge lattice metamaterial

被引:46
|
作者
Zhang, Wenjiao [1 ,2 ]
Neville, Robin [2 ]
Zhang, Dayi [2 ,3 ]
Scarpa, Fabrizio [2 ]
Wang, Lifeng [4 ]
Lakes, Roderic [5 ]
机构
[1] Northeast Agr Univ, Sch Engn, 59 Mucai St, Harbin 150030, Heilongjiang, Peoples R China
[2] Univ Bristol, Bristol Composites Inst ACCIS, Bristol BS8 1TR, Avon, England
[3] Beijng Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[4] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA
[5] Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA
基金
欧盟地平线“2020”; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Lattice; Metamaterial; Chiral; Elasticity; Tension; Shear; NEGATIVE POISSONS RATIO; AUXETIC MECHANICAL METAMATERIALS; HONEYCOMBS; BEHAVIOR; HOMOGENIZATION; CONSTANTS; SHAPE; FOAM; CUT;
D O I
10.1016/j.ijsolstr.2018.02.027
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a lattice structure defined by patterns of slits that follow a rotational symmetry (chiral) configuration. The chiral pattern of the slits creates a series of hinges that produce deformation mechanisms for the lattice due to bending of the ribs, leading to a marginal negative Poisson's ratio. The engineering constants are modeled using theoretical and numerical Finite Element simulations. The results are bench-marked with experimental data obtained from uniaxial and off-axis tensile tests, with an overall excellent agreement. The chiral hinge lattice is almost one order of magnitude more compliant than other configurations with patterned slits and - in contrast to other chiral micropolar media - exhibits an in-plane shear modulus that closely obeys the relation between Young's modulus and Poisson's ratio in homogeneous isotropic linear elastic materials. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [21] Band structure of two-dimensional square lattice photonic crystals of circular dispersive metamaterial rods
    A. Soltani Vala
    S. Roshan Entezar
    A. A. Sedghi
    The European Physical Journal B, 2011, 81 : 269 - 274
  • [22] A study of deformation mechanisms for a two-dimensional metamaterial
    Akhmetshin, Linar R.
    Iokhim, Kristina V.
    Kazantseva, Ekaterina A.
    Smolin, Igor' Yu.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (89): : 51 - 65
  • [23] Band structure of two-dimensional square lattice photonic crystals of circular dispersive metamaterial rods
    Vala, A. Soltani
    Entezar, S. Roshan
    Sedghi, A. A.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 81 (03): : 269 - 274
  • [24] Two-dimensional acoustic metamaterial with negative modulus
    Ding, Changlin
    Hao, Limei
    Zhao, Xiaopeng
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [25] A NOVEL MECHANICAL TWO-DIMENSIONAL TETRACHIRAL METAMATERIAL
    Akhmetshin, L. R.
    NANOSCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL, 2022, 13 (02) : 15 - 22
  • [27] Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure
    Zhao, Sheng-Dong
    Wang, Yue-Sheng
    COMPTES RENDUS PHYSIQUE, 2016, 17 (05) : 533 - 542
  • [28] Creating topological interfaces and detecting chiral edge modes in a two-dimensional optical lattice
    Goldman, N.
    Jotzu, G.
    Messer, M.
    Gorg, F.
    Desbuquois, R.
    Esslinger, T.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [29] OPTIMAL PERFORATION DESIGN IN TWO-DIMENSIONAL ELASTICITY
    ZOCHOWSKI, A
    MECHANICS OF STRUCTURES AND MACHINES, 1988, 16 (01): : 17 - 33
  • [30] Consistent two-dimensional chiral gravity
    Smailagic, A
    Spallucci, E
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (21): : 3695 - 3722