Ultrahigh fuel utilization in polymer electrolyte fuel cells - Part II: A modeling study

被引:3
|
作者
Wang, Yun [1 ,2 ]
Yang, Xiaoguang [1 ,2 ]
Wang, Chao-Yang [1 ,2 ]
机构
[1] Penn State Univ, Electrochem Engine Ctr ECEC, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Fuel cells; fuel utilization; hydrogen; low stoichiometry; modeling; water management; SIMULATION; TRANSPORT; FLOW; DEFORMATION; PERFORMANCE; VALIDATION; DYNAMICS;
D O I
10.1080/15435075.2021.1941042
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, ultrahigh fuel utilization (>98%) in polymer electrolyte fuel cells (PEFCs) is numerically studied to investigate three aspects for this operation strategy: its effect on fuel cell performance, occurance of fuel starvation, and altered water management. Simulation results reveal that the anode flow, when using pure hydrogen fuel, decelerates to nearly zero under the high fuel utlization. The anode gas flow remains high in the hydrogen concentration throughout the gas flow channel, eliminating concerns of fuel starvation and increased anode overpotential. The numerical study confirms the experimental observation that the high-fuel-utilization strategy has very little impact on cell power output in the stable operating regime. It is shown that fuel cell's water removal almost totally relies on the cathode channel flow under ultrahigh fuel utilization, which may be one cause for experimentally observed instability in fuel cell operation under low current density.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [21] Materials for polymer electrolyte fuel cells
    Gubler, L
    Beck, N
    Gürsel, SA
    Hajbolouri, F
    Kramer, D
    Reiner, A
    Steiger, B
    Scherer, GG
    Wokaun, A
    Rajesh, B
    Thampi, KR
    CHIMIA, 2004, 58 (12) : 826 - 836
  • [22] Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells
    Guvelioglu, GH
    Stenger, HG
    JOURNAL OF POWER SOURCES, 2005, 147 (1-2) : 95 - 106
  • [23] Modeling water phenomena in the cathode side of polymer electrolyte fuel cells
    Zhang, Yufan
    Agravante, Gerard
    Kadyk, Thomas
    Eikerling, Michael H.
    ELECTROCHIMICA ACTA, 2023, 452
  • [24] Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
    Zhang, S.
    Reimer, U.
    Rahim, Y.
    Beale, S. B.
    Lehnert, W.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2019, 16 (03)
  • [25] Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells
    Messing, Marvin
    Kjeang, Erik
    JOURNAL OF POWER SOURCES, 2020, 451
  • [26] 3D modeling of polymer electrolyte membrane fuel cells
    Eldrid, S
    Shahnam, M
    Prinkey, MT
    Dong, Z
    FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, 2003, : 195 - 202
  • [27] Advanced impedance modeling for micropatterned polymer electrolyte membrane fuel cells
    Tanaka, Akihisa
    Nagato, Keisuke
    Tomizawa, Morio
    Inoue, Gen
    Nagai, Kohei
    Nakao, Masayuki
    JOURNAL OF POWER SOURCES, 2022, 545
  • [28] Mesoscopic Modeling of Liquid Water Transport in Polymer Electrolyte Fuel Cells
    Mukherjee, P. P.
    Wang, C. Y.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 2125 - 2132
  • [29] Effect of Humidification Temperature on Air Utilization Properties of Polymer Electrolyte Fuel Cells
    Hariyama, Suguru
    Sasou, Hidetoshi
    Abe, Satoshi
    Nishikawa, Hisao
    Sugawara, Toshikazu
    Aoki, Tsutomu
    Ogami, Yasuji
    ELECTRICAL ENGINEERING IN JAPAN, 2009, 166 (03) : 18 - 26
  • [30] Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells
    Cheng, XL
    Yi, BL
    Han, M
    Zhang, JX
    Qiao, YG
    Yu, JR
    JOURNAL OF POWER SOURCES, 1999, 79 (01) : 75 - 81