Modeling water phenomena in the cathode side of polymer electrolyte fuel cells

被引:5
|
作者
Zhang, Yufan [1 ,2 ]
Agravante, Gerard [3 ]
Kadyk, Thomas [1 ,4 ]
Eikerling, Michael H. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Theory & Computat Energy Mat IEK 13, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Chair Theory & Computat Energy Mat, D-52062 Aachen, Germany
[3] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[4] JARA Energy, Julich Aachen Res Alliance, D-52425 Julich, Germany
关键词
GAS-DIFFUSION LAYERS; LIQUID WATER; MICROPOROUS LAYER; CATALYST LAYERS; 2-PHASE FLOW; SATURATION; TRANSPORT; PERFORMANCE; MANAGEMENT; CONTINUUM;
D O I
10.1016/j.electacta.2023.142228
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water exerts a crucial influence on the performance of a polymer electrolyte fuel cell as both "catalyst activating agent" and "oxygen blocker". Therefore, fine-tuning the water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathode catalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid water saturation is both a composition variable determining the effective properties and a variable that depends on the solution of the transport equations that use the effective properties. The model reveals the formation of a thin water layer in the diffusion medium adjacent to the catalyst layer at high current density. This interfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in the catalyst layer, which causes a drastic increase in the voltage loss at high current density that drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, and propose mitigation strategies. The fundamental understanding gained will aid the development of membrane electrode assemblies with tailored pore network properties to achieve vital improvements in performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modeling of Transport Phenomena In Polymer Electrolyte Fuel Cells
    Suh, Dong Myung
    Park, S. B.
    2010 12TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, 2010,
  • [2] Analyzing and Modeling of Water Transport Phenomena in Open-Cathode Polymer Electrolyte Membrane Fuel Cell
    Yuan, Wei-Wei
    Ou, Kai
    Jung, Seunghun
    Kim, Young-Bae
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [3] Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells
    Messing, Marvin
    Kjeang, Erik
    JOURNAL OF POWER SOURCES, 2020, 451
  • [4] Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell
    Qin, Chaozhong
    Rensink, Dirk
    Fell, Stephan
    Hassanizadeh, S. Majid
    JOURNAL OF POWER SOURCES, 2012, 197 : 136 - 144
  • [5] Transport Phenomena Within the Cathode for a Polymer Electrolyte Fuel Cell
    Liu, Juanfang
    Oshima, Nobuyuki
    Kurihara, Eru
    HEAT TRANSFER ENGINEERING, 2011, 32 (7-8) : 609 - 615
  • [6] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [7] A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
    Weber, Adam Z.
    Borup, Rodney L.
    Darling, Robert M.
    Das, Prodip K.
    Dursch, Thomas J.
    Gu, Wenbin
    Harvey, David
    Kusoglu, Ahmet
    Litster, Shawn
    Mench, Matthew M.
    Mukundan, Rangachary
    Owejan, Jon P.
    Pharoah, Jon G.
    Secanell, Marc
    Zenyuk, Iryna V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (12) : F1254 - F1299
  • [8] EFFECT OF OPERATING CONDITIONS ON THE WATER TRANSPORT PHENOMENA AT THE CATHODE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL
    Seo, Sang Hern
    Lee, Chang Sik
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 177 - 184
  • [9] Macroscopic analysis of characteristic water transport phenomena in polymer electrolyte fuel cells
    Jung, Hye-Mi
    Lee, Kwan-Soo
    Um, Sukkee
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (08) : 2073 - 2086
  • [10] Mesoscopic Modeling of Liquid Water Transport in Polymer Electrolyte Fuel Cells
    Mukherjee, P. P.
    Wang, C. Y.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 2125 - 2132