Modeling water phenomena in the cathode side of polymer electrolyte fuel cells

被引:5
|
作者
Zhang, Yufan [1 ,2 ]
Agravante, Gerard [3 ]
Kadyk, Thomas [1 ,4 ]
Eikerling, Michael H. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Theory & Computat Energy Mat IEK 13, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Chair Theory & Computat Energy Mat, D-52062 Aachen, Germany
[3] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[4] JARA Energy, Julich Aachen Res Alliance, D-52425 Julich, Germany
关键词
GAS-DIFFUSION LAYERS; LIQUID WATER; MICROPOROUS LAYER; CATALYST LAYERS; 2-PHASE FLOW; SATURATION; TRANSPORT; PERFORMANCE; MANAGEMENT; CONTINUUM;
D O I
10.1016/j.electacta.2023.142228
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water exerts a crucial influence on the performance of a polymer electrolyte fuel cell as both "catalyst activating agent" and "oxygen blocker". Therefore, fine-tuning the water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathode catalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid water saturation is both a composition variable determining the effective properties and a variable that depends on the solution of the transport equations that use the effective properties. The model reveals the formation of a thin water layer in the diffusion medium adjacent to the catalyst layer at high current density. This interfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in the catalyst layer, which causes a drastic increase in the voltage loss at high current density that drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, and propose mitigation strategies. The fundamental understanding gained will aid the development of membrane electrode assemblies with tailored pore network properties to achieve vital improvements in performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Modeling the performance of electrosprayed catalyst layers in the cathode of polymer electrolyte membrane fuel cells
    Garcia-Salaberri, Pablo A.
    Duque, Luis
    Folgado, Maria Antonia
    Diaz-Alvarez, Ester
    Chaparro, Antonio M.
    FUEL, 2025, 380
  • [12] Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones
    Kulikovsky, AA
    Divisek, J
    Kornyshev, AA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (11) : 3981 - 3991
  • [13] Mathematical modeling of polymer electrolyte fuel cells
    Sousa, R
    Gonzalez, ER
    JOURNAL OF POWER SOURCES, 2005, 147 (1-2) : 32 - 45
  • [14] Cell level modeling of the hygrothermal characteristics of open cathode polymer electrolyte membrane fuel cells
    Andisheh-Tadbir, Mehdi
    Desouza, Andrew
    Bahrami, Majid
    Kjeang, Erik
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) : 14993 - 15004
  • [15] Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells
    Mukherjee, Partha P.
    Wang, Chao-Yang
    Kang, Qinjun
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6861 - 6875
  • [16] Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells
    Mukherjee, Partha P.
    Wang, Chao-Yang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (11) : B1121 - B1131
  • [17] Experimental Study of Effects of Operating Conditions on Water Transport Phenomena in the Cathode of Polymer Electrolyte Membrane Fuel Cell
    Seo, Sang Hern
    Lee, Chang Sik
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (06):
  • [18] Modeling of ion and water transport in the polymer electrolyte membrane of PEM fuel cells
    Baschuk, J. J.
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5095 - 5103
  • [19] Dynamic modeling of the effect of water management on polymer electrolyte fuel cells performance
    Culubret, S.
    Rubio, M. A.
    Sanchez, D. G.
    Urquia, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (09) : 5710 - 5722
  • [20] Modeling Studies of a Cylindrical Polymer Electrolyte Membrane Fuel Cell Cathode
    Modekurti, Srinivasarao
    Bullecks, Brian
    Bhattacharyya, Debangsu
    Rengaswamy, Raghunathan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (13) : 5003 - 5010