Characterization on irregular tight wavelet frames with matrix dilations

被引:0
|
作者
Yang, Deyun [1 ,2 ]
Huan, Zhengliang [1 ]
Song, Zhanjie [3 ]
Yang, Hongxiang [1 ]
机构
[1] Taishan Univ, Dept Informat Sci & Technol, Tai An 271000, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[3] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
来源
COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS | 2007年 / 4488卷
基金
中国国家自然科学基金;
关键词
irregular frame; tight wavelet frame; matrix dilations; bessel sequences;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There are many results in one dimensional wavelet frame theory in recent years. However, since there are some essential differences in high dimensional cases, the classical methods for one dimensional regular wavelet frames are unsuitable for the cases. In this paper, under some conditions on matrix-dilated sequences, a characterization formula for irregular tight frames of matrix-dilated wavelets is developed. It is based on the regular formulation by Chui, Czaja, Maggioni, Weiss, and on the recent multivariate results by Yang and Zhou.
引用
收藏
页码:1029 / +
页数:2
相关论文
共 50 条
  • [41] Frames of dilations
    Fard, M. A. Hasankhani
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2016, 78 (02): : 43 - 48
  • [42] FRAMES OF DILATIONS
    Fard, M. A. Hasankhani
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (02): : 43 - 48
  • [43] Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames
    Bin Han
    Zuowei Shen
    Israel Journal of Mathematics, 2009, 172 : 371 - 398
  • [44] Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames
    Han, Bin
    Shen, Zuowei
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 172 (01) : 371 - 398
  • [45] Tight periodic wavelet frames and approximation orders
    Goh, Say Song
    Han, Bin
    Shen, Zuowei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (02) : 228 - 248
  • [46] Construction for a class of smooth wavelet tight frames
    Lizhong Peng
    Haihui Wang
    Science in China Series F: Information Sciences, 2003, 46 : 445 - 458
  • [47] INEQUALITIES FOR WAVELET FRAMES WITH COMPOSITE DILATIONS IN L2(Rn)
    Ahmad, Owais
    Sheikh, Neyaz A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 31 - 41
  • [48] Tight frames and geometric properties of wavelet sets
    Benedetto, JJ
    Sumetkijakan, S
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 35 - 56
  • [49] Univariate tight wavelet frames of minimal support
    Gomez-Cubillo, F.
    Villullas, S.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (02)
  • [50] On the Continuous Steering of the Scale of Tight Wavelet Frames
    Puspoki, Zsuzsanna
    Ward, John Paul
    Sage, Daniel
    Unser, Michael
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (03): : 1042 - 1062