Characterization on irregular tight wavelet frames with matrix dilations

被引:0
|
作者
Yang, Deyun [1 ,2 ]
Huan, Zhengliang [1 ]
Song, Zhanjie [3 ]
Yang, Hongxiang [1 ]
机构
[1] Taishan Univ, Dept Informat Sci & Technol, Tai An 271000, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[3] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
irregular frame; tight wavelet frame; matrix dilations; bessel sequences;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There are many results in one dimensional wavelet frame theory in recent years. However, since there are some essential differences in high dimensional cases, the classical methods for one dimensional regular wavelet frames are unsuitable for the cases. In this paper, under some conditions on matrix-dilated sequences, a characterization formula for irregular tight frames of matrix-dilated wavelets is developed. It is based on the regular formulation by Chui, Czaja, Maggioni, Weiss, and on the recent multivariate results by Yang and Zhou.
引用
收藏
页码:1029 / +
页数:2
相关论文
共 50 条
  • [31] Tight wavelet frames for subdivision
    Charina, Maria
    Stoeckler, Joachim
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 293 - 301
  • [32] On Dual Wavelet Tight Frames
    Department of Mathematical Sciences, University of Alberta, Edmonton, Alta. T6G 2G1, Canada
    Appl Comput Harmonic Anal, 4 (380-413):
  • [33] A characterization of tight wavelet frames on local fields of positive characteristic
    Shah, F. A.
    Abdullah
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (06): : 251 - 259
  • [34] EXPLICIT CONSTRUCTION OF BIVARIATE WAVELET TIGHT FRAMES WITH SPECIAL DILATION MATRIX
    Huang, Yong-Dong
    Yang, Miao
    Zhao, Ying-Min
    Cheng, Zheng-Xing
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 329 - +
  • [35] Stability of Multiwavelet Frames with Different Matrix Dilations and Matrix Translations
    Shah, F. A.
    Goyal, Sunita
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (01): : 151 - 160
  • [36] Sufficient Conditions for Irregular Wavelet Frames
    Zhao, Zhijing
    Sun, Wenchang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (11-12) : 1394 - 1407
  • [37] On Refinement Masks of Tight Wavelet Frames
    Lebedeva E.A.
    Shcherbakov I.A.
    Journal of Mathematical Sciences, 2023, 273 (4) : 476 - 484
  • [38] Tight Wavelet Frames on Multislice Graphs
    Leonardi, Nora
    Van de Ville, Dimitri
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) : 3357 - 3367
  • [39] Symmetric and antisymmetric tight wavelet frames
    Goh, Say Song
    Lim, Zhi Yuan
    Shen, Zuowei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 411 - 421
  • [40] Stability of wavelet frames and Riesz bases, with respect to dilations and translations
    Zhang, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1113 - 1121