Robust clustering of acoustic emission signals using the Kohonen network

被引:0
|
作者
Emamian, V [1 ]
Kaveh, M [1 ]
Tewfik, AH [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic emission-based techniques are promising for nondestructive inspection of mechanical systems. For reliable automatic fault monitoring, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. In this paper we propose the application of the Kohonen network for this purpose. The principal components of the short-time Fourier transforms of the data were applied to the input of the network. The clustering results confirm the capability of the Kohonen network for reliable source identification of acoustic emission signals, assuming enough care has been taken in implementing the training algorithm of the network.
引用
收藏
页码:3891 / 3894
页数:4
相关论文
共 50 条
  • [21] Monitoring of microturning process using acoustic emission signals
    Moni Ribeiro Filho, Sergio Luiz
    de Oliveira, Juliano Aparecido
    Lauro, Carlos Henrique
    Brandao, Lincoln Cardoso
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (06)
  • [22] Fuzzy Kohonen Clustering Network for Color Image Segmentation
    Jabbar, Nahla
    Ahson, S. I.
    Mehrotra, Monica
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (IACSIT ICMLC 2009), 2009, : 254 - 257
  • [23] Features preserving filters using fuzzy Kohonen clustering network in detection of impulse noise
    Singh, KM
    Bora, PK
    Mahanta, A
    IEEE REGION 10 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC TECHNOLOGY, VOLS 1 AND 2, 2001, : 420 - 423
  • [24] Neural Network Analysis of Acoustic Emission Signals for Drill Wear Monitoring
    Prasopchaichana, Kritsada
    Kwon, Oh-Yang
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2008, 28 (03) : 254 - 262
  • [25] Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches
    O. I. Traore
    P. Cristini
    N. Favretto-Cristini
    L. Pantera
    P. Vieu
    S. Viguier-Pla
    Computational Statistics, 2019, 34 : 631 - 652
  • [26] Clustering of sources of acoustic-emission signals by the leading-edge rise rate
    Stepanov, L. N.
    Ramazanov, I. S.
    Kabanov, S. I.
    Lebedev, E. Yu.
    Kanifadin, K. V.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2009, 45 (10) : 685 - 692
  • [27] Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches
    Traore, O. I.
    Cristini, P.
    Favretto-Cristini, N.
    Pantera, L.
    Vieu, P.
    Viguier-Pla, S.
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 631 - 652
  • [28] Clustering of sources of acoustic-emission signals by the leading-edge rise rate
    L. N. Stepanov
    I. S. Ramazanov
    S. I. Kabanov
    E. Yu. Lebedev
    K. V. Kanifadin
    Russian Journal of Nondestructive Testing, 2009, 45 : 685 - 692
  • [29] Analysis and Clustering of Acoustic Emission Signals in the Tensile Deformation of AZ31B
    Yu, Jae-Hyeong
    Yoon, Jung-Sik
    Choi, In-Gyu
    Kang, John S.
    Chung, Wanjin
    Lee, Chang-Whan
    METALS AND MATERIALS INTERNATIONAL, 2025, 31 (03) : 676 - 691
  • [30] Clustering reveals cavitation-related acoustic emission signals from dehydrating branches
    Vergeynst, Lidewei L.
    Sause, Markus G. R.
    De Baerdemaeker, Niels J. F.
    De Roo, Linus
    Steppe, Kathy
    TREE PHYSIOLOGY, 2016, 36 (06) : 786 - 796