Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches

被引:6
|
作者
Traore, O. I. [1 ]
Cristini, P. [1 ]
Favretto-Cristini, N. [1 ]
Pantera, L. [2 ]
Vieu, P. [3 ]
Viguier-Pla, S. [3 ,4 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA, Marseille, France
[2] CEA, DEN, DER SRES, Cadarache, F-13108 St Paul Les Durance, France
[3] Univ Paul Sabatier, UMR5219, Equipe Stat & Proba, Inst Math, 118 Route Narbonne, F-31062 Toulouse 9, France
[4] Univ Perpignan, LAMPS, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan 9, France
关键词
Functional clustering; Curve smoothing; Hierarchical clustering; Semi-metric; Functional principal component analysis; IDENTIFICATION;
D O I
10.1007/s00180-018-00864-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of nuclear safety experiments, we consider curves issued from acoustic emission. The aim of their analysis is the forecast of the physical phenomena associated with the behavior of the nuclear fuel. In order to cope with the complexity of the signals and the diversity of the potential source mechanisms, we experiment innovative clustering strategies which creates new curves, the envelope and the spectrum, from each raw hits, and combine spline smoothing methods with nonparametric functional and dimension reduction methods. The application of these strategies prove that in nuclear context, adapted functional methods are effective for data clustering.
引用
收藏
页码:631 / 652
页数:22
相关论文
共 50 条
  • [1] Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches
    O. I. Traore
    P. Cristini
    N. Favretto-Cristini
    L. Pantera
    P. Vieu
    S. Viguier-Pla
    Computational Statistics, 2019, 34 : 631 - 652
  • [2] TWO APPROACHES TO THE DESCRIPTION OF ACOUSTIC EMISSION SIGNALS IN THE KINETIC MODEL OF COMPOSITE DESTRUCTION
    Filonenko, Sergey
    Kalita, Viktor
    Nimchenko, Tatiana
    AVIATION, 2011, 15 (02) : 31 - 37
  • [3] Using two-stage clustering of acoustic-emission signals for the detection of weld flaws
    L. N. Stepanova
    I. S. Ramazanov
    K. V. Kanifandin
    V. V. Kireenko
    Russian Journal of Nondestructive Testing, 2011, 47 : 393 - 397
  • [4] Using two-stage clustering of acoustic-emission signals for the detection of weld flaws
    Stepanova, L. N.
    Ramazanov, I. S.
    Kanifandin, K. V.
    Kireenko, V. V.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2011, 47 (06) : 393 - 397
  • [5] Powder compression monitoring with fuzzy clustering of acoustic emission signals
    Eissa, S
    Terchi, A
    Au, YHJ
    Jones, BE
    ICOM 2003: INTERNATIONAL CONFERENCE ON MECHATRONICS, 2003, : 477 - 482
  • [6] Robust clustering of acoustic emission signals using the Kohonen network
    Emamian, V
    Kaveh, M
    Tewfik, AH
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3891 - 3894
  • [7] A nonparametric Bayesian approach for the detection of acoustic emission events in time series signals
    Lindley, C.A.
    Jones, M.R.
    Rogers, T.J.
    Dwyer-Joyce, R.S.
    Dervilis, N.
    Worden, K.
    Proceedings of ISMA 2022 - International Conference on Noise and Vibration Engineering and USD 2022 - International Conference on Uncertainty in Structural Dynamics, 2022, : 4777 - 4787
  • [8] Visualisation and dimension reduction of acoustic emission data for damage detection
    Manson, G
    Worden, K
    Martin, A
    Tunnicliffe, DL
    DAMAS 99: DAMAGE ASSESSMENT OF STRUCTURES, 1999, 167-1 : 64 - 75
  • [9] Visualisation and dimension reduction of acoustic emission data for damage detection
    Manson, G
    Worden, K
    Holford, K
    Pullin, R
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2001, 12 (08) : 529 - 536
  • [10] Quantification of the Uncertainty of Pattern Recognition Approaches Applied to Acoustic Emission Signals
    Markus G. R. Sause
    Siegfried Horn
    Journal of Nondestructive Evaluation, 2013, 32 : 242 - 255