Evaluation of a Real-Time Hybrid Three-Dimensional Echo and X-Ray Imaging System for Guidance of Cardiac Catheterisation Procedures

被引:0
|
作者
Housden, R. J. [1 ]
Arujuna, A. [1 ,2 ,3 ]
Ma, Y. [1 ]
Nijhof, N. [3 ]
Gijsbers, G. [3 ]
Bullens, R. [3 ]
O'Neill, M. [1 ,2 ]
Cooklin, M. [2 ]
Rinaldi, C. A. [2 ]
Gill, J. [2 ]
Kapetanakis, S. [2 ]
Hancock, J. [2 ]
Thomas, M. [2 ]
Razavi, R. [1 ,2 ]
Rhode, K. S. [1 ]
机构
[1] Kings Coll London, Div Imaging Sci & Biomed Engn, London WC2R 2LS, England
[2] Guys & St Thomas NHS Fdn Trust, Dept Cardiol, London, England
[3] Philips Healthcare, Intervent Xray, Best, Netherlands
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II | 2012年 / 7511卷
关键词
Intervention guidance; image fusion; registration; X-ray fluoroscopy; 4D ultrasound; REGISTRATION; FLUOROSCOPY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Minimally invasive cardiac surgery is made possible by image guidance technology. X-ray fluoroscopy provides high contrast images of catheters and devices, whereas 3D ultrasound is better for visualising cardiac anatomy. We present a system in which the two modalities are combined, with a trans-esophageal echo volume registered to and overlaid on an X-ray projection image in real-time. We evaluate the accuracy of the system in terms of both temporal synchronisation errors and overlay registration errors. The temporal synchronisation error was found to be 10% of the typical cardiac cycle length. In 11 clinical data sets, we found an average alignment error of 2.9 mm. We conclude that the accuracy result is very encouraging and sufficient for guiding many types of cardiac interventions. The combined information is clinically useful for placing the echo image in a familiar coordinate system and for more easily identifying catheters in the echo volume.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [31] Object-based three-dimensional X-ray imaging
    Benjamin, R
    Prakoonwit, S
    Matalas, I
    Kitney, RI
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1996, 34 (06) : 423 - 430
  • [32] Three-dimensional imaging of dislocations by X-ray diffraction laminography
    Haenschke, D.
    Helfen, L.
    Altapova, V.
    Danilewsky, A.
    Baumbach, T.
    APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [33] Three-dimensional object recognition using x-ray imaging
    Yeom, S
    Javidi, B
    Roh, YJ
    Cho, HS
    OPTICAL ENGINEERING, 2005, 44 (02) : 1 - 23
  • [34] Three-Dimensional Real-Time Through-the-Wall Imaging
    Zhang, Wenji
    Liu, Qing Huo
    Hoorfar, Ahmad
    2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [35] A method for real-time three-dimensional vector velocity Imaging
    Jensen, JA
    Nikolov, SI
    2003 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2003, : 1582 - 1585
  • [36] Stress echocardiography using real-time three-dimensional imaging
    Berbarie, Rafic F.
    Dib, Elie
    Ahmad, Masood
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2018, 35 (08): : 1196 - 1203
  • [37] Three-dimensional real-time in vivo magnetic particle imaging
    Weizenecker, J.
    Gleich, B.
    Rahmer, J.
    Dahnke, H.
    Borgert, J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (05): : L1 - L10
  • [38] A system of X-ray visualization in the real-time mode
    O. A. Bashutin
    Instruments and Experimental Techniques, 2015, 58 : 268 - 271
  • [39] A system of X-ray visualization in the real-time mode
    Bashutin, O. A.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2015, 58 (02) : 268 - 271
  • [40] Development of real-time x-ray microtomography system
    Takano, H.
    Morikawa, M.
    Konishi, S.
    Azuma, H.
    Shimomura, S.
    Tsusaka, Y.
    Nakano, S.
    Kosaka, N.
    Yamamoto, K.
    Kagoshima, Y.
    11TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY (XRM2012), 2013, 463