Characterization of generalized Haar spaces

被引:1
|
作者
Bartelt, M [1 ]
Li, W [1 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
D O I
10.1006/jath.1996.3108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a subset G of C-0(T, R-k) is rotation-invariant if (Qg: g is an element of G) = G for any k x k orthogonal matrix e. Let G be a rotation-invariant finite-dimensional subspace of C-0(T, R-k) on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if P-G(f) is strongly unique of order 2 whenever P-G(f) is a singleton. (C) 1998 Academic Press.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [1] Wavelets in Generalized Haar Spaces
    Dem’yanovich Y.K.
    Journal of Mathematical Sciences, 2020, 251 (5) : 615 - 634
  • [2] The generalized haar spaces and their adaptive decomposition
    Demjanovich A.Y.K.
    Safonova T.A.
    Terekhov M.A.
    Belyakova V.
    Le B.T.N.
    Demjanovich, A. Yuri K. (Yuri.Demjanovich@gmail.com), 1600, North Atlantic University Union NAUN (14): : 548 - 560
  • [3] ON HAAR BASES FOR GENERALIZED DYADIC HARDY SPACES
    Aimar, Hugo
    Bernardis, Ana
    Nowak, Luis
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (03) : 697 - 712
  • [4] The Haar wavelet characterization of weighted Herz spaces and greediness of the Haar wavelet basis
    Izuki, Mitsuo
    Sawano, Yoshihiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (01) : 140 - 155
  • [5] Characterization of generalized Orlicz spaces
    Ferreira, Rita
    Hasto, Peter
    Ribeiro, Ana Margarida
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (02)
  • [6] Generalized Haar wavelet
    Yuan, Xiao
    Chen, Xiangdong
    Li, Qiliang
    Yang, Jiade
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2002, 31 (01):
  • [7] Generalized Haar integral
    Niemiec, Piotr
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (12) : 1323 - 1328
  • [8] CHARACTERIZATION OF SPACES OF GENERALIZED LIOUVILLE DIFFERENTIATION
    KALJABIN, GA
    MATHEMATICS OF THE USSR-SBORNIK, 1977, 33 (01): : 37 - 42
  • [9] ON SYLVESTER PROBLEM AND HAAR SPACES
    BORWEIN, PB
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 109 (02) : 275 - 278
  • [10] POSITIVE FUNCTIONS IN HAAR SPACES
    CORAY, C
    HEAL, ER
    JOURNAL OF APPROXIMATION THEORY, 1979, 25 (03) : 201 - 203