Anisotropic (p, q)-equations with superlinear reaction

被引:1
|
作者
Bai, Yunru [1 ]
Papageorgiou, Nikolaos S. [2 ]
Zeng, Shengda [3 ,4 ,5 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Guangxi, Peoples R China
[2] Natl Tech Univ Athens, Dept Math, Zograrou Campus, Athens 15780, Greece
[3] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[5] Jagiellonian Univ Krakow, Aculty Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Anisotropic regularity; Extremal constant sign solutions; Nodal solution; Critical point theory; Critical group; EQUATIONS;
D O I
10.1007/s11587-022-00702-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian and a superlinear reaction which need not satisfy the Ambrosetti-Robinowitz condition. By using variational tools together with truncation and comparison techniques and critical groups, we show the existence of at least five nontrivial smooth solutions, all with sign information: two positive, two negative and a nodal (sign-changing).
引用
收藏
页码:1737 / 1755
页数:19
相关论文
共 50 条
  • [21] Positive Solutions for Singular Anisotropic (p, q)-Equations
    Nikolaos S. Papageorgiou
    Patrick Winkert
    The Journal of Geometric Analysis, 2021, 31 : 11849 - 11877
  • [22] Positive Solutions for Singular Anisotropic (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11849 - 11877
  • [23] Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (04) : 1 - 19
  • [24] On Superlinear p-Laplace Equations
    Duong Minh Duc
    VIETNAM JOURNAL OF MATHEMATICS, 2018, 46 (03) : 507 - 516
  • [25] GLOBAL MULTIPLICITY FOR PARAMETRIC ANISOTROPIC NEUMANN (p, q)-EQUATIONS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (01) : 393 - 422
  • [26] Anisotropic and p, q-nonlinear partial differential equations
    Paolo Marcellini
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2020, 31 : 295 - 301
  • [27] Anisotropic p,q-Laplacian equations when p goes to 1
    Mercaldo, A.
    Rossi, J. D.
    Segura de Leon, S.
    Trombetti, C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3546 - 3560
  • [28] Multiple sign-changing solutions for superlinear (p, q)-equations in symmetrical expanding domains
    Liu, Wulong
    Dai, Guowei
    Winkert, Patrick
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [29] WEIGHTED (p, q )-EQUATIONS WITH GRADIENT DEPENDENT REACTION
    Jing, Zhao
    Liu, Zhenhai
    Papageorgiou, Nikolaos s.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 : 1 - 14
  • [30] On superlinear p(x)-Laplacian equations in RN
    Alves, Claudianor O.
    Liu, Shibo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) : 2566 - 2579