GLOBAL MULTIPLICITY FOR PARAMETRIC ANISOTROPIC NEUMANN (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Brno Univ, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[7] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Anisotropic operator; superlinear reaction; positive and nodal solutions; critical groups; KIRCHHOFF-TYPE PROBLEMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SOBOLEV SPACES; EXISTENCE;
D O I
10.12775/TMNA.2022.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Neumann boundary value problem driven by the anisotropic (p, q)-Laplacian plus a parametric potential term. The reaction is "superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. Also, we show the existence of a minimal positive solution and finally, we produce a nodal solution.
引用
收藏
页码:393 / 422
页数:30
相关论文
共 50 条
  • [1] Parametric Anisotropic(p,q)-Neumann Problems
    Zhen-hai LIU
    Nikolaos S.PAPAGEORGIOU
    Acta Mathematicae Applicatae Sinica, 2023, 39 (04) : 926 - 942
  • [2] Parametric Anisotropic (p, q)-Neumann Problems
    Zhen-hai Liu
    Nikolaos S. Papageorgiou
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 926 - 942
  • [3] Parametric Anisotropic (p, q)-Neumann Problems
    Liu, Zhen-hai
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 926 - 942
  • [4] A MULTIPLICITY THEOREM FOR PARAMETRIC SUPERLINEAR (p, q)-EQUATIONS
    Onete, Florin-Iulian
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    OPUSCULA MATHEMATICA, 2020, 40 (01) : 131 - 149
  • [5] Global Multiplicity for the Positive Solutions of Parametric Singular (p, q)-equations with Indefinite Perturbations
    Nikolaos S. Papageorgiou
    Chao Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [6] Global Multiplicity for the Positive Solutions of Parametric Singular (p, q)-equations with Indefinite Perturbations
    Papageorgiou, Nikolaos S.
    Zhang, Chao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [7] Singular Neumann (p, q)-equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Positivity, 2020, 24 : 1017 - 1040
  • [8] Singular Neumann (p, q)-equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    POSITIVITY, 2020, 24 (04) : 1017 - 1040
  • [9] Existence, Uniqueness and Asymptotic Behavior of Parametric Anisotropic (p, q)-Equations with Convection
    Francesca Vetro
    Patrick Winkert
    Applied Mathematics & Optimization, 2022, 86
  • [10] Existence, Uniqueness and Asymptotic Behavior of Parametric Anisotropic (p, q)-Equations with Convection
    Vetro, Francesca
    Winkert, Patrick
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (02):