Rethinking interactive image segmentation: Feature space annotation

被引:4
|
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] INTERACTIVE IMAGE SEGMENTATION WITH TRANSFORMERS
    Faizov, Boris
    Shakhuro, Vlad
    Konushin, Anton
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1171 - 1175
  • [32] Sequential interactive image segmentation
    Lin, Zheng
    Zhang, Zhao
    Zhu, Zi-Yue
    Fan, Deng-Ping
    Liu, Xia-Lei
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (04) : 753 - 765
  • [33] FusionNet for Interactive Image Segmentation
    Wu, Enyi
    Shi, Qingxuan
    Wang, Kanglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 332 - 346
  • [34] Sequential interactive image segmentation
    Zheng Lin
    Zhao Zhang
    Zi-Yue Zhu
    Deng-Ping Fan
    Xia-Lei Liu
    Computational Visual Media, 2023, 9 : 753 - 765
  • [35] Interactive tools for image segmentation
    Jackowski, M
    Goshtasby, A
    Satter, M
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 1063 - 1074
  • [36] CGAN: lightweight and feature aggregation network for high-performance interactive image segmentation
    Gui Yan
    Zhang Zhengyan
    Chen Zhihua
    Zhang Chuang
    Zhang Jin
    The Visual Computer, 2024, 40 : 2203 - 2217
  • [37] CGAN: lightweight and feature aggregation network for high-performance interactive image segmentation
    Yan, Gui
    Zhengyan, Zhang
    Zhihua, Chen
    Chuang, Zhang
    Jin, Zhang
    VISUAL COMPUTER, 2024, 40 (03): : 2203 - 2217
  • [38] Visual and structural feature combination in an interactive machine learning system for medical image segmentation
    Galisot, Gaetan
    Ramel, Jean -Yves
    Brouard, Thierry
    Chaillou, Elodie
    Serres, Barthelemy
    MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [39] Interactive Image Segmentation Based on Fusion of Two-Stage Feature and Transformer Encoder
    Feng, Jun
    Zhang, Tian
    Shi, Yichen
    Wang, Hui
    Hu, Jingjing
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (06): : 831 - 843
  • [40] ScaleNet: Rethinking Feature Interaction from a Scale-Wise Perspective for Medical Image Segmentation
    Feng, Yu
    Ma, Tai
    Zeng, Hao
    Xu, Zhengke
    Zhang, Suwei
    Wen, Ying
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 222 - 236