Rethinking interactive image segmentation: Feature space annotation

被引:4
|
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] AN INTERACTIVE FRAMEWORK FOR ONLINE IMAGE ANNOTATION
    Gao, Xinxin
    Zhang, Chuang
    Wu, Ming
    Lin, Zhiqing
    2009 IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT, PROCEEDINGS, 2009, : 400 - 404
  • [22] ClusterNet: Unsupervised Generic Feature Learning for Fast Interactive Satellite Image Segmentation
    Girard, Nicolas
    Zhygallo, Andrii
    Tarabalka, Yuliya
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [23] Progressive medical image annotation with convolutional neural network-based interactive segmentation method
    Bai, Yunkun
    Sun, Guangmin
    Li, Yu
    Le Shen
    Li Zhang
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [24] Interactive Image Annotation and AI-assisted Segmentation of TEM Images for Automatic CD Measurement
    Kim, Dongok
    Lee, Wonhee
    Yim, Yeny
    Cha, Byeongkyu
    Park, Hansaem
    Shon, Subong
    Lee, Myungjun
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVIII, 2024, 12955
  • [25] Feature selection for automatic image annotation
    Setia, Lokesh
    Burkhardt, Hans
    PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 294 - 303
  • [26] Improving feature space based image segmentation via density modification
    Sen, Debashis
    Pal, Sankar K.
    INFORMATION SCIENCES, 2012, 191 : 169 - 191
  • [27] FEATURE SPACE MESSAGE PASSING NETWORK FOR MEDICAL IMAGE SEMANTIC SEGMENTATION
    Sun, Junxiao
    Zhang, Ke
    Niu, Shuyi
    Zhang, Yan
    Kong, Youyong
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1081 - 1085
  • [28] Designing an interactive tool for video object segmentation and annotation
    Luo, HT
    Eleftheriadis, A
    ACM MULTIMEDIA 99, PROCEEDINGS, 1999, : 265 - 269
  • [29] An interactive authoring system for video object segmentation and annotation
    Luo, HT
    Eleftheriadis, A
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2002, 17 (07) : 559 - 572
  • [30] Predicting Sufficient Annotation Strength for Interactive Foreground Segmentation
    Jain, Suyog Dutt
    Grauman, Kristen
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1313 - 1320