Rethinking interactive image segmentation: Feature space annotation

被引:4
|
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Rethinking Feature Guidance for Medical Image Segmentation
    Wang, Wei
    He, Jixing
    Wang, Xin
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 641 - 645
  • [2] From global image annotation to interactive object segmentation
    Giro-i-Nieto, Xavier
    Martos, Manuel
    Mohedano, Eva
    Pont-Tuset, Jordi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (01) : 475 - 493
  • [3] From global image annotation to interactive object segmentation
    Xavier Giró-i-Nieto
    Manuel Martos
    Eva Mohedano
    Jordi Pont-Tuset
    Multimedia Tools and Applications, 2014, 70 : 475 - 493
  • [4] Rethinking Click Embedding for Deep Interactive Image Segmentation
    Ding, Zongyuan
    Wang, Tao
    Sun, Quansen
    Chen, Fuhua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 261 - 273
  • [5] INTERACTIVE COCONUT TREE ANNOTATION USING FEATURE SPACE PROJECTIONS
    Vargas-Munoz, John E.
    Zhou, Ping
    Falcao, Alexandre X.
    Tuia, Devis
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5718 - 5721
  • [6] INTERACTIVE IMAGE SEGMENTATION BASED ON OBJECT CONTOUR FEATURE IMAGE
    Chen, Qiang
    Xue, Benben
    Sun, Quansen
    Xia, Deshen
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3605 - 3608
  • [7] Optimal feature space for semantic image segmentation
    Anishchenko S.I.
    Petrushan M.V.
    Pattern Recognition and Image Analysis, 2014, 24 (4) : 502 - 505
  • [8] Interactive Image Segmentation Based on Feature-Aware Attention
    Sun, Jinsheng
    Ban, Xiaojuan
    Han, Bing
    Yang, Xueyuan
    Yao, Chao
    SYMMETRY-BASEL, 2022, 14 (11):
  • [9] Estimation of image feature reliability for an interactive video segmentation scheme
    Castagno, R
    Sodomaco, A
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 938 - 942
  • [10] Instance Segmentation as Image Segmentation Annotation
    Watanabe, Thomio
    Wolf, Denis F.
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 432 - 437