THE NICHE GRAPHS OF INTERVAL ORDERS

被引:2
|
作者
Park, Jeongmi [1 ]
Sano, Yoshio [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Univ Tsukuba, Fac Engn Informat & Sci, Div Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
competition graph; niche graph; semiorder; interval order;
D O I
10.7151/dmgt.1741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N-D(+)(x) boolean AND N-D(+)(y) not equal theta or N-D(-) (x) boolean AND N-D(-)(y) not equal theta, where N-D(+)(x) (resp. N-D(+)(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V, A) is called a semiorder (or a unit interval order) if there exist a real-valued function f : V -> R on the set V and a positive real number delta is an element of R such that (x, y) E A if and only if f (x) > f (y) + delta digraph D = (V, A) is called an interval order if there exists an assignment J of a closed real interval J(x) c N to each vertex x E V such that (x, y) is an element of A if and only if min J(x) > max J(y).
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [41] Towards fuzzy interval orders
    Diaz, S.
    Montes, S.
    De Baets, B.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 211 - 216
  • [42] Critically prime interval orders
    Zaguia, Imed
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5727 - 5734
  • [43] Numerical Representations of Interval Orders
    Gianni Bosi
    Juan Carlos Candeal
    Esteban Induráin
    Esteban Oloriz
    Margarita Zudaire
    Order, 2001, 18 : 171 - 190
  • [44] Limits of interval orders and semiorders
    Janson, Svante
    JOURNAL OF COMBINATORICS, 2012, 3 (02) : 163 - 183
  • [45] BOUND ON DIMENSION OF INTERVAL ORDERS
    BOGART, KP
    RABINOVICH, I
    TROTTER, WT
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 21 (03) : 319 - 328
  • [46] Branch and Price for Preemptive Resource Constrained Project Scheduling Problem Based on Interval Orders in Precedence Graphs
    Moukrim, Aziz
    Quilliot, Alain
    Toussaint, Helene
    2013 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2013, : 321 - 328
  • [47] Counting Split Interval Orders
    James A. Reeds
    Peter C. Fishburn
    Order, 2001, 18 : 129 - 135
  • [48] MAXIMUM SEMIORDERS IN INTERVAL ORDERS
    FISHBURN, PC
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (02): : 127 - 135
  • [49] THE COMMUNICATION COMPLEXITY OF INTERVAL ORDERS
    FAIGLE, U
    SCHRADER, R
    TURAN, G
    DISCRETE APPLIED MATHEMATICS, 1992, 40 (01) : 19 - 28
  • [50] Numerical representations of interval orders
    Bosi, G
    Candeal, JC
    Induráin, E
    Oloriz, E
    Zudaire, M
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2001, 18 (02): : 171 - 190