THE NICHE GRAPHS OF INTERVAL ORDERS

被引:2
|
作者
Park, Jeongmi [1 ]
Sano, Yoshio [2 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
[2] Univ Tsukuba, Fac Engn Informat & Sci, Div Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
competition graph; niche graph; semiorder; interval order;
D O I
10.7151/dmgt.1741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The niche graph of a digraph D is the (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if N-D(+)(x) boolean AND N-D(+)(y) not equal theta or N-D(-) (x) boolean AND N-D(-)(y) not equal theta, where N-D(+)(x) (resp. N-D(+)(x)) is the set of out-neighbors (resp. in-neighbors) of x in D. A digraph D = (V, A) is called a semiorder (or a unit interval order) if there exist a real-valued function f : V -> R on the set V and a positive real number delta is an element of R such that (x, y) E A if and only if f (x) > f (y) + delta digraph D = (V, A) is called an interval order if there exists an assignment J of a closed real interval J(x) c N to each vertex x E V such that (x, y) is an element of A if and only if min J(x) > max J(y).
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [21] Interval orders and dimension
    Kierstead, HA
    Trotter, WT
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 179 - 188
  • [22] Homothetic interval orders
    Lemaire, Bertrand
    Le Menestrel, Marc
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1669 - 1683
  • [23] COUNTING INTERVAL ORDERS
    HAXELL, PE
    MCDONALD, JJ
    THOMASON, SK
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1987, 4 (03): : 269 - 272
  • [24] Basic interval orders
    Myers, A
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1999, 16 (03): : 261 - 275
  • [25] ON THE DIRECTIONALITY OF INTERVAL ORDERS
    BOUCHITTE, V
    JEGOU, R
    RAMPON, JX
    DISCRETE APPLIED MATHEMATICS, 1994, 48 (01) : 87 - 92
  • [26] Shellability of Interval Orders
    Louis J. Billera
    Amy N. Myers
    Order, 1998, 15 : 113 - 117
  • [27] Representability of interval orders
    Oloriz, E
    Candeal, JC
    Indurain, E
    JOURNAL OF ECONOMIC THEORY, 1998, 78 (01) : 219 - 227
  • [28] Tolerance graphs and orders
    Felsner, S
    JOURNAL OF GRAPH THEORY, 1998, 28 (03) : 129 - 140
  • [29] Separator Theorems for Interval Graphs and Proper Interval Graphs
    Panda, B. S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 101 - 110
  • [30] INTERVAL LENGTHS FOR INTERVAL ORDERS - A MINIMIZATION PROBLEM
    FISHBURN, PC
    DISCRETE MATHEMATICS, 1983, 47 (01) : 63 - 82