Dynamics of stochastic Lorenz-Stenflo system

被引:8
|
作者
Huang, Zaitang [1 ]
Cao, Junfei [2 ]
Jiang, Ting [1 ]
机构
[1] Guangxi Teachers Educ Univ, Sch Math Sci, Nanning 530023, Peoples R China
[2] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Lorenz-Stenflo system; Stochastic ultimate bound; Random attractor; Stochastic bifurcation; Levy noise; ACOUSTIC-GRAVITY WAVES; EQUATIONS; BIFURCATION; ATMOSPHERE; CHAOS;
D O I
10.1007/s11071-014-1562-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses the Lorenz-Stenflo system under the influence of Levy noise. We find conditions under which the solution to stochastic Lorenz-Stenflo system is exponentially stable. We then investigate the estimation of the global attractive set and stochastic bifurcation behavior of the stochastic Lorenz-Stenflo system. Results show that the jump noise can make the solution stable, the bounds and bifurcation to undergo change under some conditions. Numerical results show the effectiveness and advantage of our methods.
引用
收藏
页码:1739 / 1754
页数:16
相关论文
共 50 条
  • [21] Some chaotic aspects of the Lorenz-Stenflo equations
    Yu, MY
    PHYSICA SCRIPTA, 1999, T82 : 10 - 11
  • [22] Complex Dynamical Behaviors of Lorenz-Stenflo Equations
    Zhang, Fuchen
    Xiao, Min
    MATHEMATICS, 2019, 7 (06)
  • [23] Secure Communication Scheme with Hyper-Chaotic Lorenz-Stenflo System
    Li, Zhanguo
    Zhang, Zheng
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2272 - 2275
  • [24] 快慢Lorenz-Stenflo系统分析
    韩修静
    江波
    毕勤胜
    物理学报, 2009, 58 (07) : 4408 - 4414
  • [25] Anti-synchronization of Lorenz-Stenflo Chaotic System using SMC
    Singh, Piyush Pratap
    Samantaray, Jagannath
    Roy, B. K.
    2014 INTERNATIONAL CONFERENCE ON POWER, CONTROL AND EMBEDDED SYSTEMS (ICPCES), 2014,
  • [26] Multistable behaviour of coupled Lorenz-Stenflo systems
    Pal, Santinath
    Sahoo, Banshidhar
    Poria, Swarup
    PHYSICA SCRIPTA, 2014, 89 (04)
  • [27] Phase space reconstruction of Lorenz-Stenflo system based on optimal parameters
    Zhou, Wei
    Chu, Yan-Dong
    Yu, Jian-Ning
    Zhendong yu Chongji/Journal of Vibration and Shock, 2009, 28 (02): : 5 - 7
  • [28] Projective and hybrid projective synchronization for the Lorenz-Stenflo system with estimation of unknown parameters
    Mukherjee, Payel
    Banerjee, Santo
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [29] Projective synchronization problem of a new Lorenz-Stenflo system by single input feedback controller
    Sun, Zuosheng
    Guo, Rongwei
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6620 - 6623
  • [30] Observer Based Synchronization of 4-D Modified Lorenz-Stenflo Chaotic System
    Singh, Piyush Pratap
    Roy, B. K.
    Handa, Himesh
    2013 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2013,