Dynamics of stochastic Lorenz-Stenflo system

被引:8
|
作者
Huang, Zaitang [1 ]
Cao, Junfei [2 ]
Jiang, Ting [1 ]
机构
[1] Guangxi Teachers Educ Univ, Sch Math Sci, Nanning 530023, Peoples R China
[2] Guangdong Univ Educ, Dept Math, Guangzhou 510310, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic Lorenz-Stenflo system; Stochastic ultimate bound; Random attractor; Stochastic bifurcation; Levy noise; ACOUSTIC-GRAVITY WAVES; EQUATIONS; BIFURCATION; ATMOSPHERE; CHAOS;
D O I
10.1007/s11071-014-1562-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses the Lorenz-Stenflo system under the influence of Levy noise. We find conditions under which the solution to stochastic Lorenz-Stenflo system is exponentially stable. We then investigate the estimation of the global attractive set and stochastic bifurcation behavior of the stochastic Lorenz-Stenflo system. Results show that the jump noise can make the solution stable, the bounds and bifurcation to undergo change under some conditions. Numerical results show the effectiveness and advantage of our methods.
引用
收藏
页码:1739 / 1754
页数:16
相关论文
共 50 条
  • [1] On the dynamics of a modified Lorenz-Stenflo system
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (07):
  • [2] REGULAR AND CHAOTIC DYNAMICS OF THE LORENZ-STENFLO SYSTEM
    Xavier, Joao C.
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 145 - 152
  • [3] On the dynamics in parameter planes of the Lorenz-Stenflo system
    Rech, Paulo C.
    PHYSICA SCRIPTA, 2015, 90 (11)
  • [4] On the dynamics of a high-order Lorenz-Stenflo system
    Rech, Paulo C.
    PHYSICA SCRIPTA, 2016, 91 (12)
  • [5] Dynamics of stochastic Lorenz–Stenflo system
    Zaitang Huang
    Junfei Cao
    Ting Jiang
    Nonlinear Dynamics, 2014, 78 : 1739 - 1754
  • [6] Periodicity of the Lorenz-Stenflo equations
    Park, Junho
    Lee, Hyunho
    Jeon, Ye-Lim
    Baik, Jong-Jin
    PHYSICA SCRIPTA, 2015, 90 (06)
  • [7] Bounds for the fast slow Lorenz-Stenflo system
    Zhang, Fuchen
    Wang, Xingyuan
    Mu, Chunlai
    Zhang, Guangyun
    NONLINEAR DYNAMICS, 2015, 79 (01) : 539 - 547
  • [8] Numerical bifurcation and Hopf continuation of Lorenz-Stenflo system
    Sahoo, Banshidhar
    PHYSICA SCRIPTA, 2013, 88 (06)
  • [9] Spiral organization of periodic structures in the Lorenz-Stenflo system
    Rech, Paulo C.
    PHYSICA SCRIPTA, 2016, 91 (07)
  • [10] Dynamical Behaviors of a Modified Lorenz-Stenflo Chaotic System
    Zhang, Fuchen
    Wang, Xingyuan
    Liao, Xiaofeng
    Zhang, Guangyun
    Mu, Chunlai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (05):