III-V Semiconductor Single Nanowire Solar Cells: A Review

被引:81
|
作者
Li, Ziyuan [1 ]
Tan, Hark Hoe [1 ]
Jagadish, Chennupati [1 ]
Fu, Lan [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
来源
ADVANCED MATERIALS TECHNOLOGIES | 2018年 / 3卷 / 09期
基金
澳大利亚研究理事会;
关键词
III-V semiconductors; nanowire solar cells; p-n junctions; power conversion efficiency; CORE-SHELL NANOWIRES; P-N-JUNCTION; SELECTIVE-AREA; GAAS NANOWIRES; EFFICIENCY ENHANCEMENT; GROWTH; DESIGN; SI; PHOTOVOLTAICS; EPITAXY;
D O I
10.1002/admt.201800005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
III-V semiconductor nanowires have gained intensive attention for solar cell applications due to their unique geometrical, optical, and electrical properties, as well as improved accessibility to a wider range of alloy compositions (and thus tunable bandgaps) and substrates (such as Si), which allows further exploration and implementation of various tandem solar cell designs to broaden and more efficiently harvest the absorption of the solar radiation. Herein, the development of this field with emphasis on single nanowire-based solar cells is reviewed. First, nanowire synthesis methods are introduced, followed by important aspects of single nanowire fabrication and design consideration for high power conversion efficiencies (PCEs) in terms of light absorption and charge carrier separation and collection. Then, the reported nanowire solar cell performance based on different III-V semiconductor nanowire materials and structures is presented and analyzed. Finally, the strategies toward high efficiency and low cost solar cells are discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] III-V Semiconductor Photoelectrodes
    Siddiqi, Georges
    Pan, Zhenhua
    Hu, Shu
    SEMICONDUCTORS FOR PHOTOCATALYSIS, 2017, 97 : 81 - 138
  • [42] III-V compound semiconductor transistors-from planar to nanowire structures
    Riel, Heike
    Wernersson, Lars-Erik
    Hong, Minghwei
    del Alamo, Jesus A.
    MRS BULLETIN, 2014, 39 (08) : 668 - 677
  • [43] Atomic Scale Strain Relaxation in Axial Semiconductor III-V Nanowire Heterostructures
    de la Mata, Maria
    Magen, Cesar
    Caroff, Philippe
    Arbiol, Jordi
    NANO LETTERS, 2014, 14 (11) : 6614 - 6620
  • [44] Key aspects in the modeling of concentrator III-V solar cells and III-V thermophotovoltaic converters
    Algora, C
    SEMICONDUCTORS, 2004, 38 (08) : 918 - 922
  • [45] Limits of III-V Nanowire Growth
    Dubrovskii, V. G.
    Sokolovskii, A. S.
    Hijazi, H.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (09) : 859 - 863
  • [46] A Brief Review of High Efficiency III-V Solar Cells for Space Application
    Li, J.
    Aierken, A.
    Liu, Y.
    Zhuang, Y.
    Yang, X.
    Mo, J. H.
    Fan, R. K.
    Chen, Q. Y.
    Zhang, S. Y.
    Huang, Y. M.
    Zhang, Q.
    FRONTIERS IN PHYSICS, 2021, 8
  • [47] III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells
    Linares, P. G.
    Marti, A.
    Antolin, E.
    Luque, A.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
  • [48] Monolithic III-V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy
    Mohseni, Parsian K.
    Behnam, Ashkan
    Wood, Joshua D.
    Zhao, Xiang
    Yu, Ki Jun
    Wang, Ning C.
    Rockett, Angus
    Rogers, John A.
    Lyding, Joseph W.
    Pop, Eric
    Li, Xiuling
    ADVANCED MATERIALS, 2014, 26 (22) : 3755 - 3760
  • [49] Topical review: pathways toward cost-effective single-junction III-V solar cells
    Raj, Vidur
    Haggren, Tuomas
    Wong, Wei Wen
    Tan, Hark Hoe
    Jagadish, Chennupati
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (14)
  • [50] Designing III-V multijunction solar cells on silicon
    Connolly, James P.
    Mencaraglia, Denis
    Renard, Charles
    Bouchier, Daniel
    PROGRESS IN PHOTOVOLTAICS, 2014, 22 (07): : 810 - 820