III-V Semiconductor Single Nanowire Solar Cells: A Review

被引:81
|
作者
Li, Ziyuan [1 ]
Tan, Hark Hoe [1 ]
Jagadish, Chennupati [1 ]
Fu, Lan [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
来源
ADVANCED MATERIALS TECHNOLOGIES | 2018年 / 3卷 / 09期
基金
澳大利亚研究理事会;
关键词
III-V semiconductors; nanowire solar cells; p-n junctions; power conversion efficiency; CORE-SHELL NANOWIRES; P-N-JUNCTION; SELECTIVE-AREA; GAAS NANOWIRES; EFFICIENCY ENHANCEMENT; GROWTH; DESIGN; SI; PHOTOVOLTAICS; EPITAXY;
D O I
10.1002/admt.201800005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
III-V semiconductor nanowires have gained intensive attention for solar cell applications due to their unique geometrical, optical, and electrical properties, as well as improved accessibility to a wider range of alloy compositions (and thus tunable bandgaps) and substrates (such as Si), which allows further exploration and implementation of various tandem solar cell designs to broaden and more efficiently harvest the absorption of the solar radiation. Herein, the development of this field with emphasis on single nanowire-based solar cells is reviewed. First, nanowire synthesis methods are introduced, followed by important aspects of single nanowire fabrication and design consideration for high power conversion efficiencies (PCEs) in terms of light absorption and charge carrier separation and collection. Then, the reported nanowire solar cell performance based on different III-V semiconductor nanowire materials and structures is presented and analyzed. Finally, the strategies toward high efficiency and low cost solar cells are discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon
    Ming Hsieh Department of Electrical Engineering, Center for Energy Nanoscience, University of Southern California, 3651 Watt Way, VHE 309, Los Angeles, CA 90089-0106, United States
    J Appl Phys, 2012, 6
  • [22] Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon
    Huang, Ningfeng
    Lin, Chenxi
    Povinelli, Michelle L.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
  • [23] III-V nanowire heterostructures
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 436 - 436
  • [24] Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis
    Fanfair, DD
    Korgel, BA
    CRYSTAL GROWTH & DESIGN, 2005, 5 (05) : 1971 - 1976
  • [25] Experimental review of series resistance for III-V concentrator solar cells
    Bissels, G. M. M. W.
    Asselbergs, M. A. H.
    Dickhout, J. M.
    Haverkamp, E. J.
    Mulder, P.
    Bauhuis, G. J.
    Vlieg, E.
    Schermer, J. J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 364 - 374
  • [26] A review on epitaxial lift-off for III-V solar cells
    van der Woude, Daan
    Reboucasa, Lara Barros
    Vlieg, Elias
    Smits, Joost
    Schermer, John
    THIN SOLID FILMS, 2024, 808
  • [27] CHANNELING STUDIES OF III-V/III-V AND IV/III-V SEMICONDUCTOR MODULATED STRUCTURES
    CHANG, CA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1983, 1 (02): : 346 - 351
  • [28] PROMISES OF III-V SOLAR-CELLS
    FAN, JCC
    SOLAR ENERGY MATERIALS, 1991, 23 (2-4): : 129 - 138
  • [29] The performance of advanced III-V solar cells
    Mueller, RL
    Gaddy, E
    CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, : 904 - 907
  • [30] Copper Metallization for III-V Solar Cells
    Saenz, Theresa E.
    Neumann, Anica N.
    Young, Matthew R.
    Zimmerman, Jeramy D.
    Warren, Emily L.
    Steiner, Myles A.
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,