A unified framework for local visual descriptors evaluation

被引:18
|
作者
Kihl, Olivier [1 ]
Picard, David [1 ]
Gosselin, Philippe-Henri [1 ,2 ]
机构
[1] Univ Cergy Pontoise, ETIS ENSEA, CNRS, UMR 8051, F-95014 Cergy Pontoise, France
[2] INRIA Rennes Bretagne Atlantique, F-35042 Rennes, France
关键词
Image processing and computer vision; Vision and scene understanding; Video analysis; Image/video retrieval; Object recognition; Feature representation; SCALE; RECOGNITION; FEATURES;
D O I
10.1016/j.patcog.2014.11.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1174 / 1184
页数:11
相关论文
共 50 条
  • [21] Visual descriptors for scene categorization: experimental evaluation
    Wei, Xue
    Son Lam Phung
    Bouzerdoum, Abdesselam
    ARTIFICIAL INTELLIGENCE REVIEW, 2016, 45 (03) : 333 - 368
  • [22] Visual descriptors for scene categorization: experimental evaluation
    Xue Wei
    Son Lam Phung
    Abdesselam Bouzerdoum
    Artificial Intelligence Review, 2016, 45 : 333 - 368
  • [23] VISUAL PRIMITIVES: LOCAL, CONDENSED, SEMANTICALLY RICH VISUAL DESCRIPTORS AND THEIR APPLICATIONS IN ROBOTICS
    Pugeault, Nicolas
    Woergoetter, Florentin
    Krueger, Norbert
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2010, 7 (03) : 379 - 405
  • [24] Performance Evaluation of Binary Descriptors of Local Features
    Figat, Jan
    Kornuta, Tomasz
    Kasprzak, Wlodzimierz
    COMPUTER VISION AND GRAPHICS, ICCVG 2014, 2014, 8671 : 187 - 194
  • [25] Evaluation of Local Descriptors for Automatic Image Annotation
    Lenc, Ladislav
    ICAART: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2017, : 527 - 534
  • [27] An Empirical Evaluation of Local Descriptors in Object Recognition
    Rani, Ritu
    Kumar, Ravinder
    Singh, Amit Prakash
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1517 - 1521
  • [28] Action Recognition Using Local Visual Descriptors and Inertial Data
    Alhersh, Taha
    Belhaouari, Samir Brahim
    Stuckenschmidt, Heiner
    AMBIENT INTELLIGENCE (AMI 2019), 2019, 11912 : 123 - 138
  • [29] A unified framework for the evaluation of complex networks
    Jiao, Bo
    Pang, Xun-long
    Guo, Rong-hua
    Du, Jing
    APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 : 1473 - 1476
  • [30] SORTING LOCAL DESCRIPTORS FOR LOWBIT RATE MOBILE VISUAL SEARCH
    Chen, Jie
    Duan, Ling-Yu
    Ji, Rongrong
    Yao, Hongxun
    Gao, Wen
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1029 - 1032