A unified framework for local visual descriptors evaluation

被引:18
|
作者
Kihl, Olivier [1 ]
Picard, David [1 ]
Gosselin, Philippe-Henri [1 ,2 ]
机构
[1] Univ Cergy Pontoise, ETIS ENSEA, CNRS, UMR 8051, F-95014 Cergy Pontoise, France
[2] INRIA Rennes Bretagne Atlantique, F-35042 Rennes, France
关键词
Image processing and computer vision; Vision and scene understanding; Video analysis; Image/video retrieval; Object recognition; Feature representation; SCALE; RECOGNITION; FEATURES;
D O I
10.1016/j.patcog.2014.11.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local descriptors are the ground layer of recognition feature based systems for still images and video. We propose a new framework for the design of local descriptors and their evaluation. This framework is based on the descriptors decomposition in three levels: primitive extraction, primitive coding and code aggregation. With this framework, we are able to explain most of the popular descriptors in the literature such as HOG, HOF or SURF. This framework provides an efficient and rigorous approach for the evaluation of local descriptors, and allows us to uncover the best parameters for each descriptor family. Moreover, we are able to extend usual descriptors by changing the code aggregation or adding new primitive coding method. The experiments are carried out on images (VOC 2007) and videos datasets (KTH, Hollywood2, UCF11 and UCF101), and achieve equal or better performances than the literature. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1174 / 1184
页数:11
相关论文
共 50 条
  • [1] A unified framework for local population frequency responses in the human visual system
    Podvalny, E.
    Michal, H.
    Noy, N.
    Bickel, S.
    Zion-Golumbic, E. M.
    Davidesco, I.
    Chechik, G.
    Schroeder, C. E.
    Mehta, A.
    Tsodyks, M.
    Malach, R.
    PERCEPTION, 2013, 42 : 235 - 235
  • [2] A comparative evaluation of interest point detectors and local descriptors for visual SLAM
    Gil, Arturo
    Martinez Mozos, Oscar
    Ballesta, Monica
    Reinoso, Oscar
    MACHINE VISION AND APPLICATIONS, 2010, 21 (06) : 905 - 920
  • [3] A comparative evaluation of interest point detectors and local descriptors for visual SLAM
    Arturo Gil
    Oscar Martinez Mozos
    Monica Ballesta
    Oscar Reinoso
    Machine Vision and Applications, 2010, 21 : 905 - 920
  • [4] Evaluation of local descriptors and CNNs for non-adult detection in visual content
    Castrillon-Santana, Modesto
    Lorenzo-Navarro, Javier
    Travieso-Gonzalez, Carlos M.
    Freire-Obregon, David
    Alonso-Hernandez, Jesus B.
    PATTERN RECOGNITION LETTERS, 2018, 113 : 10 - 18
  • [5] A performance evaluation of local descriptors
    Mikolajczyk, K
    Schmid, C
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2003, : 257 - 263
  • [6] Robustness Evaluation of Local Descriptors
    Li, Binquan
    Hu, Xiaohui
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [7] A performance evaluation of local descriptors
    Mikolajczyk, K
    Schmid, C
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) : 1615 - 1630
  • [8] Quantitative Review of Local Descriptors for Visual Search
    Bianco, Simone
    Schettini, Raimondo
    Mazzini, Davide
    Pau, Danilo Pietro
    2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2013,
  • [9] Evaluation of visual descriptors for painting categorisation
    Bianconi, Francesco
    Bello-Cerezo, Raquel
    FLORENCE HERI-TECH - THE FUTURE OF HERITAGE SCIENCE AND TECHNOLOGIES, 2018, 364
  • [10] A comprehensive evaluation of local detectors and descriptors
    Wu, Song
    Oerlemans, Ard
    Bakker, Erwin M.
    Lew, Michael S.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 59 : 150 - 167