Parameter estimation from interval-valued data using the expectation-maximization algorithm

被引:13
|
作者
Su, Zhi-Gang [1 ]
Wang, Pei-Hong [1 ]
Li, Yi-Guo [1 ]
Zhou, Ze-Kun [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized likelihood function; interval-valued data; maximum likelihood estimation; EM algorithm; regression analysis; MAXIMUM-LIKELIHOOD; REGRESSION; MODELS;
D O I
10.1080/00949655.2013.822870
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [41] A FAST CONVERGENCE PHASE ESTIMATION METHOD BASED ON EXPECTATION-MAXIMIZATION ALGORITHM
    Wang Ge
    Yu Hong-Yi
    4TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER THEORY AND ENGINEERING ( ICACTE 2011), 2011, : 309 - 312
  • [42] Maximum likelihood estimation and expectation-maximization algorithm for controlled branching processes
    Gonzalez, M.
    Minuesa, C.
    del Puerto, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 209 - 227
  • [43] MIMO Channel Estimation Using the Variational Expectation-Maximization Method
    Jiang, Zhengwei
    Lim, Teng Joon
    Doostnejad, Roya
    Tang, Taiwen
    2010 IEEE 72ND VEHICULAR TECHNOLOGY CONFERENCE FALL, 2010,
  • [44] Multichannel image identification and restoration using the expectation-maximization algorithm
    Tom, BC
    Lay, KT
    Katsaggelos, AK
    OPTICAL ENGINEERING, 1996, 35 (01) : 241 - 254
  • [45] Blind source separation using variational expectation-maximization algorithm
    Nasios, N
    Bors, AG
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 442 - 450
  • [46] Estimation of Random Mobility Models using the Expectation-Maximization Method
    Li, Tao
    Wan, Yan
    Liu, Mushang
    Lewis, Frank L.
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 641 - 646
  • [47] Probabilistic Data Association for Orbital-Element Estimation Using Multistage Expectation-Maximization
    Bernstein, Jason
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2021, 18 (05): : 250 - 268
  • [48] Restoration from partially-known blur using an expectation-maximization algorithm
    Mesarovic, VZ
    Galatsanos, NP
    Wernick, MN
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 95 - 99
  • [49] Tracking Objects of Arbitrary Shape Using Expectation-Maximization Algorithm
    Zeng, Shuqing
    Li, Yuanhong
    Shen, Yantao
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 4575 - 4580
  • [50] Expectation-maximization algorithm with total variation regularization for vector-valued image segmentation
    Liu, Jun
    Ku, Yin-Bon
    Leung, Shingyu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2012, 23 (08) : 1234 - 1244