Parameter estimation from interval-valued data using the expectation-maximization algorithm

被引:13
|
作者
Su, Zhi-Gang [1 ]
Wang, Pei-Hong [1 ]
Li, Yi-Guo [1 ]
Zhou, Ze-Kun [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized likelihood function; interval-valued data; maximum likelihood estimation; EM algorithm; regression analysis; MAXIMUM-LIKELIHOOD; REGRESSION; MODELS;
D O I
10.1080/00949655.2013.822870
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [21] Estimation of acoustic echoes using expectation-maximization methods
    Usama Saqib
    Sharon Gannot
    Jesper Rindom Jensen
    EURASIP Journal on Audio, Speech, and Music Processing, 2020
  • [22] Estimation of acoustic echoes using expectation-maximization methods
    Saqib, Usama
    Gannot, Sharon
    Jensen, Jesper Rindom
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2020, 2020 (01)
  • [23] Parameter Estimation for Gaussian Mixture Processes based on Expectation-Maximization Method
    Xia, Xue
    Zhang, Xuebo
    Chen, Xiaohui
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 519 - 523
  • [24] Estimation of Intracellular Calcium Ion Concentration by Nonlinear State Space Modeling and Expectation-Maximization Algorithm for Parameter Estimation
    Tsunoda, Takamasa
    Omori, Toshiaki
    Miyakawa, Hiroyoshi
    Okada, Masato
    Aonishi, Toru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (12)
  • [25] Parameter Estimation of Birnbaum-Saunders Distribution under Competing Risks Using the Quantile Variant of the Expectation-Maximization Algorithm
    Park, Chanseok
    Wang, Min
    MATHEMATICS, 2024, 12 (11)
  • [26] Expectation-Maximization Algorithm with Local Adaptivity
    Leung, Shingyu
    Liang, Gang
    Solna, Knut
    Zhao, Hongkai
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (03): : 834 - 857
  • [27] Missing Step Count Data? Step Away From the Expectation-Maximization Algorithm
    Tackney, Mia S.
    Stahl, Daniel
    Williamson, Elizabeth
    Carpenter, James
    JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR, 2022, 5 (04) : 205 - 214
  • [28] On-line expectation-maximization algorithm for latent data models
    Cappe, Olivier
    Moulines, Eric
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 593 - 613
  • [29] Expectation-Maximization Algorithm for Topic Modeling on Big Data Streams
    Romsaiyud, Walisa
    2016 IEEE 7TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS MOBILE COMMUNICATION CONFERENCE (UEMCON), 2016,
  • [30] Reliability assessment with amalgamated data via the expectation-maximization algorithm
    Gouno, E
    Courtrai, L
    IEEE TRANSACTIONS ON RELIABILITY, 1998, 47 (04) : 425 - 430