Parameter estimation from interval-valued data using the expectation-maximization algorithm

被引:13
|
作者
Su, Zhi-Gang [1 ]
Wang, Pei-Hong [1 ]
Li, Yi-Guo [1 ]
Zhou, Ze-Kun [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized likelihood function; interval-valued data; maximum likelihood estimation; EM algorithm; regression analysis; MAXIMUM-LIKELIHOOD; REGRESSION; MODELS;
D O I
10.1080/00949655.2013.822870
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [2] Parameter estimation from load-sharing system data using the expectation-maximization algorithm
    Park, Chanseok
    IIE TRANSACTIONS, 2013, 45 (02) : 147 - 163
  • [3] Parameter Estimation of Aircraft Dynamics via Unscented Smoother with Expectation-Maximization Algorithm
    Yokoyama, Nobuhiro
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (02) : 426 - 436
  • [4] The expectation-maximization algorithm
    Moon, TK
    IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [5] An approach based on expectation-maximization algorithm for parameter estimation of Lamb wave signals
    Jia, Hongbo
    Zhang, Zhichun
    Liu, Hongwei
    Dai, Fuhong
    Liu, Yanju
    Leng, Jinsong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 120 : 341 - 355
  • [6] An expectation-maximization algorithm working on data summary
    Jin, HD
    Leung, KS
    Wong, ML
    COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 221 - 226
  • [7] An Expectation-Maximization Algorithm to Compute a Stochastic Factorization From Data
    Barreto, Andre M. S.
    Beirigo, Rafael L.
    Pineau, Joelle
    Precup, Doina
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3329 - 3336
  • [8] Estimation of void boundaries in flow field using expectation-maximization algorithm
    Khambampati, Anil Kumar
    Rashid, Ahmar
    Lee, Jeong Seong
    Kim, Bong Seok
    Liu, Dong
    Kim, Sin
    Kim, Kyung Youn
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (03) : 355 - 374
  • [9] Parameter Estimation for Rayleigh-Pearson Mixture Model Based on Expectation-Maximization Algorithm
    Wang, Shuo
    Hao, Chengpeng
    Xu, Da
    Chen, Dong
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [10] Quantum expectation-maximization algorithm
    Miyahara, Hideyuki
    Aihara, Kazuyuki
    Lechner, Wolfgang
    PHYSICAL REVIEW A, 2020, 101 (01)