SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
|
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [41] Sparse image representation through multiple multiresolution analysis
    Cotronei, Mariantonia
    Ruweler, Dorte
    Sauer, Tomas
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 500
  • [42] A geometric interpretation of the multiresolution criterion in nonparametric regression
    Mildenberger, Thoralf
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (07) : 599 - 609
  • [43] Control and Uncertainty Propagation in the Presence of Outliers by Utilizing Student-t Process Regression
    Papadimitriou, Dimitris
    Sojoudi, Somayeh
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2748 - 2754
  • [44] Sparse Regression by Projection and Sparse Discriminant Analysis
    Qi, Xin
    Luo, Ruiyan
    Carroll, Raymond J.
    Zhao, Hongyu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (02) : 416 - 438
  • [45] Sparse PCA from Sparse Linear Regression
    Bresler, Guy
    Park, Sung Min
    Persu, Madalina
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [46] Sparse Least Squares Support Vector Regression via Multiresponse Sparse Regression
    Vieira, David Clifte da S.
    Rocha Neto, Ajalmar R.
    Rodrigues, Antonio Wendell de O.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3218 - 3225
  • [47] Are Latent Factor Regression and Sparse Regression Adequate?
    Fan, Jianqing
    Lou, Zhipeng
    Yu, Mengxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1076 - 1088
  • [48] Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits
    Ahadi, Majid
    Roy, Sourajeet
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (10) : 1640 - 1652
  • [49] Optimal functions for a periodic uncertainty principle and multiresolution analysis
    Prestin, J
    Quak, E
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 : 225 - 242
  • [50] Sparse and nonnegative sparse D-MORPH regression
    Genyuan Li
    Roberto Rey-de-Castro
    Xi Xing
    Herschel Rabitz
    Journal of Mathematical Chemistry, 2015, 53 : 1885 - 1914