SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
|
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [31] Sparse Regression as a Sparse Eigenvalue Problem
    Moghaddam, Baback
    Gruber, Amit
    Weiss, Yair
    Avidan, Shai
    2008 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2008, : 157 - +
  • [32] Sparse Convex Regression
    Bertsimas, Dimitris
    Mundru, Nishanth
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (01) : 262 - 279
  • [33] Uncertainty propagation or box propagation
    Barrio, R.
    Rodriguez, M.
    Abad, A.
    Serrano, S.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 2602 - 2615
  • [34] Blockwise sparse regression
    Kim, Yuwon
    Kim, Jinseog
    Kim, Yongdai
    STATISTICA SINICA, 2006, 16 (02) : 375 - 390
  • [35] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217
  • [36] Adaptive sparse regression
    Figueiredo, MAT
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 237 - 247
  • [37] Sparse Regression Codes
    Venkataramanan, Ramji
    Tatikonda, Sekhar
    Barron, Andrew
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2019, 15 (1-2): : 1 - 195
  • [38] Multiresolution Kernel Approximation for Gaussian Process Regression
    Ding, Yi
    Kondor, Risi
    Eskreis-Winkler, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [39] A multiresolution wavelet kernel for support vector regression
    Han, Feng-Qing
    Wang, Da-Cheng
    Li, Chuan-Dong
    Liao, Xiao-Feng
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1022 - 1029
  • [40] Multiscale and Multiresolution methods for Sparse representation of Large datasets
    Shekhar, Prashant
    Patra, Abani
    Csatho, Beata M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1652 - 1661