Accelerated Sim-to-Real Deep Reinforcement Learning: Learning Collision Avoidance from Human Player

被引:21
|
作者
Niu, Hanlin [1 ]
Ji, Ze [2 ]
Arvin, Farshad [1 ]
Lennox, Barry [1 ]
Yin, Hujun [1 ]
Carrasco, Joaquin [1 ]
机构
[1] Univ Manchester, Dept Elect & Elect Engn, Manchester, Lancs, England
[2] Cardiff Univ, Sch Engn, Cardiff, Wales
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/IEEECONF49454.2021.9382693
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a sensor-level mapless collision avoidance algorithm for use in mobile robots that map raw sensor data to linear and angular velocities and navigate in an unknown environment without a map. An efficient training strategy is proposed to allow a robot to learn from both human experience data and self-exploratory data. A game format simulation framework is designed to allow the human player to tele-operate the mobile robot to a goal and human action is also scored using the reward function. Both human player data and self-playing data are sampled using prioritized experience replay algorithm. The proposed algorithm and training strategy have been evaluated in two different experimental configurations: Environment 1, a simulated cluttered environment, and Environment 2, a simulated corridor environment, to investigate the performance. It was demonstrated that the proposed method achieved the same level of reward using only 16% of the training steps required by the standard Deep Deterministic Policy Gradient (DDPG) method in Environment 1 and 20% of that in Environment 2. In the evaluation of 20 random missions, the proposed method achieved no collision in less than 2 h and 2.5 h of training time in the two Gazebo environments respectively. The method also generated smoother trajectories than DDPG. The proposed method has also been implemented on a real robot in the real-world environment for performance evaluation. We can confirm that the trained model with the simulation software can be directly applied into the real-world scenario without further fine-tuning, further demonstrating its higher robustness than DDPG. The video and code are available: https://youtu.be/BmwxevgsdGc https://github.com/hanlinniu/turtlebot3_ddpg_collision_avoidance
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [41] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Rafiei, Alireza
    Fasakhodi, Amirhossein Oliaei
    Hajati, Farshid
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (03) : 613 - 622
  • [42] A Collision Avoidance Method Based on Deep Reinforcement Learning
    Feng, Shumin
    Sebastian, Bijo
    Ben-Tzvi, Pinhas
    ROBOTICS, 2021, 10 (02)
  • [43] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    OCEAN ENGINEERING, 2022, 260
  • [44] Dynamic Obstacle Avoidance for Cable-Driven Parallel Robots With Mobile Bases via Sim-to-Real Reinforcement Learning
    Liu, Yuming
    Cao, Zhihao
    Xiong, Hao
    Du, Junfeng
    Cao, Huanhui
    Zhang, Lin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1683 - 1690
  • [45] Reinforcement Learning-based Sim-to-Real Impedance Parameter Tuning for Robotic Assembly
    Kim, Yong-Geon
    Na, Minwoo
    Song, Jae-Bok
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 833 - 836
  • [46] Torque-Based Deep Reinforcement Learning for Task-and-Robot Agnostic Learning on Bipedal Robots Using Sim-to-Real Transfer
    Kim, Donghyeon
    Berseth, Glen
    Schwartz, Mathew
    Park, Jaeheung
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6251 - 6258
  • [47] Crossing the Reality Gap: A Survey on Sim-to-Real Transferability of Robot Controllers in Reinforcement Learning
    Salvato, Erica
    Fenu, Gianfranco
    Medvet, Eric
    Pellegrino, Felice Andrea
    IEEE ACCESS, 2021, 9 : 153171 - 153187
  • [48] Efficient Sim-to-Real Transfer in Reinforcement Learning Through Domain Randomization and Domain Adaptation
    Shakerimov, Aidar
    Alizadeh, Tohid
    Varol, Huseyin Atakan
    IEEE ACCESS, 2023, 11 : 136809 - 136824
  • [49] Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial Observability in Visual Navigation
    Lobos-Tsunekawa, Kenzo
    Harada, Tatsuya
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5871 - 5878
  • [50] Reinforcement Learning and Sim-to-Real Transfer of Reorientation and Landing Control for Quadruped Robots on Asteroids
    Qi, Ji
    Gao, Haibo
    Su, Huanli
    Huo, Mingying
    Yu, Haitao
    Deng, Zongquan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (11) : 14392 - 14400