Accelerated Sim-to-Real Deep Reinforcement Learning: Learning Collision Avoidance from Human Player

被引:21
|
作者
Niu, Hanlin [1 ]
Ji, Ze [2 ]
Arvin, Farshad [1 ]
Lennox, Barry [1 ]
Yin, Hujun [1 ]
Carrasco, Joaquin [1 ]
机构
[1] Univ Manchester, Dept Elect & Elect Engn, Manchester, Lancs, England
[2] Cardiff Univ, Sch Engn, Cardiff, Wales
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/IEEECONF49454.2021.9382693
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a sensor-level mapless collision avoidance algorithm for use in mobile robots that map raw sensor data to linear and angular velocities and navigate in an unknown environment without a map. An efficient training strategy is proposed to allow a robot to learn from both human experience data and self-exploratory data. A game format simulation framework is designed to allow the human player to tele-operate the mobile robot to a goal and human action is also scored using the reward function. Both human player data and self-playing data are sampled using prioritized experience replay algorithm. The proposed algorithm and training strategy have been evaluated in two different experimental configurations: Environment 1, a simulated cluttered environment, and Environment 2, a simulated corridor environment, to investigate the performance. It was demonstrated that the proposed method achieved the same level of reward using only 16% of the training steps required by the standard Deep Deterministic Policy Gradient (DDPG) method in Environment 1 and 20% of that in Environment 2. In the evaluation of 20 random missions, the proposed method achieved no collision in less than 2 h and 2.5 h of training time in the two Gazebo environments respectively. The method also generated smoother trajectories than DDPG. The proposed method has also been implemented on a real robot in the real-world environment for performance evaluation. We can confirm that the trained model with the simulation software can be directly applied into the real-world scenario without further fine-tuning, further demonstrating its higher robustness than DDPG. The video and code are available: https://youtu.be/BmwxevgsdGc https://github.com/hanlinniu/turtlebot3_ddpg_collision_avoidance
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [31] Robust Walking and Sim-to-Real Optimization for Quadruped Robots via Reinforcement Learning
    Ji, Chao
    Liu, Diyuan
    Gao, Wei
    Zhang, Shiwu
    JOURNAL OF BIONIC ENGINEERING, 2025, 22 (01) : 107 - 117
  • [32] Using sim-to-real transfer learning to close gaps between simulation and real environments through reinforcement learning
    Ushida, Yuto
    Razan, Hafiyanda
    Ishizuya, Shunta
    Sakuma, Takuto
    Kato, Shohei
    ARTIFICIAL LIFE AND ROBOTICS, 2022, 27 (01) : 130 - 136
  • [33] Using sim-to-real transfer learning to close gaps between simulation and real environments through reinforcement learning
    Yuto Ushida
    Hafiyanda Razan
    Shunta Ishizuya
    Takuto Sakuma
    Shohei Kato
    Artificial Life and Robotics, 2022, 27 : 130 - 136
  • [34] A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots
    Zhu, Wei
    Guo, Xian
    Owaki, Dai
    Kutsuzawa, Kyo
    Hayashibe, Mitsuhiro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3444 - 3459
  • [35] Sim-to-real reinforcement learning applied to end-to-end vehicle control
    Kalapos, Andras
    Gor, Csaba
    Moni, Robert
    Harmati, Istvan
    2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [36] DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation
    Qin, Yuzhe
    Huang, Binghao
    Yin, Zhao-Heng
    Su, Hao
    Wang, Xiaolong
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 594 - 605
  • [37] Sim-to-Real Transfer Reinforcement Learning for Position Control of Pneumatic Continuum Manipulator
    Cheng, Qiang
    Liu, Hongshuai
    Gao, Xifeng
    Zhang, Ying
    Hao, Lina
    IEEE ACCESS, 2023, 11 : 126110 - 126118
  • [38] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Alireza Rafiei
    Amirhossein Oliaei Fasakhodi
    Farshid Hajati
    International Journal of Automotive Technology, 2022, 23 : 613 - 622
  • [39] Deep Reinforcement Learning for Collision Avoidance of Robotic Manipulators
    Sangiovanni, Bianca
    Rendiniello, Angelo
    Incremona, Gian Paolo
    Ferrara, Antonella
    Piastra, Marco
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2063 - 2068
  • [40] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Rafiei, Alireza
    Fasakhodi, Amirhossein Oliaei
    Hajati, Farshid
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (03) : 613 - 622