Predicting enthalpy of vaporization for Persistent Organic Pollutants with Quantitative Structure-Property Relationship (QSPR) incorporating the influence of temperature on volatility

被引:25
|
作者
Sosnowska, Anita [1 ]
Barycki, Maciej [1 ]
Jagiello, Karolina [1 ]
Haranczyk, Maciej [2 ]
Gajewicz, Agnieszka [1 ]
Kawai, Toru [3 ]
Suzuki, Noriyuki [3 ]
Puzyn, Tomasz [1 ]
机构
[1] Univ Gdansk, Fac Chem, Inst Environm & Human Hlth Protect, Lab Environm Chemometr, PL-80308 Gdansk, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Natl Inst Environm Studies, Res Ctr Environm Risk, Exposure Assessment Res Sect, Tsukuba, Ibaraki 3058506, Japan
基金
日本学术振兴会;
关键词
Persistent Organic Pollutants; Enthalpy of vaporization; QSPR; Temperature dependence; Quantum-mechanical descriptors; POLYCHLORINATED-BIPHENYLS PCBS; RELATIONSHIP 3D-QSPR MODELS; THERMODYNAMIC PROPERTIES; PARTITION-COEFFICIENT; DIPHENYL ETHERS; VAPOR-PRESSURE; QSAR MODELS; DESCRIPTORS; VALIDATION; CONGENERS;
D O I
10.1016/j.atmosenv.2013.12.036
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enthalpy of vaporization (Delta H-vap) is a thermodynamic property associated with the dispersal of Persistent Organic Pollutants (POPS) in the environment. Common problem in the environmental risk assessment studies is the lack of experimentally measured Delta H-vap data. This problem can be solved by employing computational techniques, including QSPR (Quantitative Structure-Property Relationship) modelling to predict properties of interest. Majority of the published QSPR models can be applied to predict the enthalpy of vaporization of compounds from only one, particular group of POPs (i.e., polychlorinated biphenyls, PCBs). We have developed a more general QSPR model to estimate the Delta H-vap values for 1436 polychlorinated and polybrominated benzenes, biphenyls, dibenzo-p-dioxins, dibenzofurans, diphenyl ethers, and naphthalenes. The QSPR model developed with Multiple Linear Regression analysis was characterized by satisfactory goodness-of-fit, robustness and the external predictive performance (R-2 = 0.888, Q(CV)(2) = 0.878, Q(Ext)(2) = 0.842, RMSEC= w5.11, RMSECV = 5.34, RMSEP = 5.74). Moreover, we quantified the temperature dependencies of vapour pressure for twelve groups of POPs based on the predictions at six different temperatures (logP(L(T))). In addition, we found a simple arithmetic relationship between the logarithmic values of vapour pressure in pairs of chloro- and bromo-analogues. By employing this relationship it is possible to estimate logP(L(T)) for any brominated POP at any temperature utilizing only the logP(L(T)) value for its chlorinated analogues. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条
  • [21] Self-accelerating decomposition temperature and quantitative structure-property relationship of organic peroxides
    Gao, Yanjie
    Xue, Yan
    Lu, Zhi-guo
    Wang, Ziheng
    Chen, Qiang
    Shi, Ning
    Sun, Feng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2015, 94 : 322 - 328
  • [22] Quantitative Structure-Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression
    Rajappan, Remya
    Shingade, Prashant D.
    Natarajan, Ramanathan
    Jayaraman, Valadi K.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (21) : 9708 - 9712
  • [23] Quantitative structure-property relationship of distribution coefficients of organic compounds
    Liu, Y.
    Yu, X.
    Chen, J.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2020, 31 (08) : 585 - 596
  • [24] Large-Scale Quantitative Structure-Property Relationship (QSPR) Analysis of Methane Storage in Metal-Organic Frameworks
    Fernandez, Michael
    Woo, Tom K.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (15): : 7681 - 7689
  • [25] Prediction of the heats of combustion for food-related organic compounds. A quantitative structure-property relationship (QSPR) study
    Diaz, Mario G.
    Dimarco Palencia, Frida V.
    Andrada, Matias F.
    Vega-Hissi, Esteban G.
    Duchowicz, Pablo R.
    Garro Martinez, Juan C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (21) : 11747 - 11759
  • [26] A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the henry's law constant of organic compounds
    Yaffe, D
    Cohen, Y
    Espinosa, G
    Arenas, A
    Giralt, F
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (01): : 85 - 112
  • [27] A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure
    Liu, Fengping
    Cao, Chenzhong
    Cheng, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (04): : 2448 - 2462
  • [28] Quantitative structure-property relationships for predicting metal binding by organic ligands
    Cabaniss, Stephen E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (14) : 5210 - 5216
  • [29] Quantitative structure-property relationship for predicting the diffusion coefficient of ionic liquids
    Xiao, Yongjun
    Song, Fan
    An, Shuhao
    Zeng, Fazhan
    Xu, Yingjie
    Peng, Changjun
    Liu, Honglai
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 349
  • [30] Development of a quantitative structure-property relationship model for predicting the electrophoretic mobilities
    Li, QF
    Dong, LJ
    Jia, RP
    Chen, XG
    Hu, ZD
    Fan, BT
    COMPUTERS & CHEMISTRY, 2002, 26 (03): : 245 - 251