Predicting enthalpy of vaporization for Persistent Organic Pollutants with Quantitative Structure-Property Relationship (QSPR) incorporating the influence of temperature on volatility

被引:25
|
作者
Sosnowska, Anita [1 ]
Barycki, Maciej [1 ]
Jagiello, Karolina [1 ]
Haranczyk, Maciej [2 ]
Gajewicz, Agnieszka [1 ]
Kawai, Toru [3 ]
Suzuki, Noriyuki [3 ]
Puzyn, Tomasz [1 ]
机构
[1] Univ Gdansk, Fac Chem, Inst Environm & Human Hlth Protect, Lab Environm Chemometr, PL-80308 Gdansk, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Natl Inst Environm Studies, Res Ctr Environm Risk, Exposure Assessment Res Sect, Tsukuba, Ibaraki 3058506, Japan
基金
日本学术振兴会;
关键词
Persistent Organic Pollutants; Enthalpy of vaporization; QSPR; Temperature dependence; Quantum-mechanical descriptors; POLYCHLORINATED-BIPHENYLS PCBS; RELATIONSHIP 3D-QSPR MODELS; THERMODYNAMIC PROPERTIES; PARTITION-COEFFICIENT; DIPHENYL ETHERS; VAPOR-PRESSURE; QSAR MODELS; DESCRIPTORS; VALIDATION; CONGENERS;
D O I
10.1016/j.atmosenv.2013.12.036
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enthalpy of vaporization (Delta H-vap) is a thermodynamic property associated with the dispersal of Persistent Organic Pollutants (POPS) in the environment. Common problem in the environmental risk assessment studies is the lack of experimentally measured Delta H-vap data. This problem can be solved by employing computational techniques, including QSPR (Quantitative Structure-Property Relationship) modelling to predict properties of interest. Majority of the published QSPR models can be applied to predict the enthalpy of vaporization of compounds from only one, particular group of POPs (i.e., polychlorinated biphenyls, PCBs). We have developed a more general QSPR model to estimate the Delta H-vap values for 1436 polychlorinated and polybrominated benzenes, biphenyls, dibenzo-p-dioxins, dibenzofurans, diphenyl ethers, and naphthalenes. The QSPR model developed with Multiple Linear Regression analysis was characterized by satisfactory goodness-of-fit, robustness and the external predictive performance (R-2 = 0.888, Q(CV)(2) = 0.878, Q(Ext)(2) = 0.842, RMSEC= w5.11, RMSECV = 5.34, RMSEP = 5.74). Moreover, we quantified the temperature dependencies of vapour pressure for twelve groups of POPs based on the predictions at six different temperatures (logP(L(T))). In addition, we found a simple arithmetic relationship between the logarithmic values of vapour pressure in pairs of chloro- and bromo-analogues. By employing this relationship it is possible to estimate logP(L(T)) for any brominated POP at any temperature utilizing only the logP(L(T)) value for its chlorinated analogues. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条
  • [11] Quantitative Structure-Property Relationship (QSPR) Modeling of Normal Boiling Point Temperature and Composition of Binary Azeotropes
    Solov'ev, Vitaly P.
    Oprisiu, Ioana
    Marcou, Gilles
    Varnek, Alexandre
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (24) : 14162 - 14167
  • [12] How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
    Dearden, J. C.
    Cronin, M. T. D.
    Kaiser, K. L. E.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2009, 20 (3-4) : 241 - 266
  • [13] A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines
    Buglak, Andrey A.
    Telegina, Taisiya A.
    Kritsky, Mikhail S.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2016, 15 (06) : 801 - 811
  • [14] A quantitative structure-property relationship for determination of enthalpy of fusion of pure compounds
    Gharagheizi, Farhad
    Gohar, Mohammad Reza Samiee
    Vayeghan, Mahsa Ghotbi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 109 (01) : 501 - 506
  • [15] The QSPR (quantitative structure-property relationship) study about the anaerobic biodegradation of chlorophenols
    Dai, Youzhi
    Yang, Dasen
    Zhu, Fei
    Wu, Lanyan
    Yang, Xiangzheng
    Li, Jianhua
    CHEMOSPHERE, 2006, 65 (11) : 2427 - 2433
  • [16] Prediction of Dielectric Constant in Series of Polymers by Quantitative Structure-Property Relationship (QSPR)
    Ascencio-Medina, Estefania
    He, Shan
    Daghighi, Amirreza
    Iduoku, Kweeni
    Casanola-Martin, Gerardo M.
    Arrasate, Sonia
    Gonzalez-Diaz, Humberto
    Rasulev, Bakhtiyor
    POLYMERS, 2024, 16 (19)
  • [17] A fuzzy ARTMAP based quantitative structure-property relationship (QSPR) for predicting aqueous solubility of organic compounds (vol 41, pg 1177, 2001)
    Yaffe, D
    Cohen, Y
    Espinosa, G
    Arenas, A
    Giralt, F
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (03): : 768 - 768
  • [18] A quantitative structure-property relationship (QSPR) for estimating solid material-air partition coefficients of organic compounds
    Huang, Lei
    Jolliet, Olivier
    INDOOR AIR, 2019, 29 (01) : 79 - 88
  • [19] Development of quantitative structure-property relationship (QSPR) models for predicting the thermal hazard of ionic liquids: A review of methods and models
    Jiang, Juncheng
    Duan, Weijia
    Wei, Qian
    Zhao, Xinyue
    Ni, Lei
    Pan, Yong
    Shu, Chi-Min
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 301 (301)
  • [20] Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study
    Platzer, Melanie
    Kiese, Sandra
    Tybussek, Thorsten
    Herfellner, Thomas
    Schneider, Franziska
    Schweiggert-Weisz, Ute
    Eisner, Peter
    FRONTIERS IN NUTRITION, 2022, 9