Characterizations of Hardy spaces associated with Laplace-Bessel operators

被引:5
|
作者
Keskin, Cansu [1 ]
Ekincioglu, Ismail [1 ]
Guliyev, Vagif S. [1 ,2 ,3 ]
机构
[1] Kutahya Dutnlupmar Univ, Dept Math, Kutahya, Turkey
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow, Russia
[3] NAS, Inst Math & Mech, Baku, Azerbaijan
关键词
Atomic decomposition; Fourier-Bessel transform; Generalized shift operator; Hardy space; Riesz-Bessel transform; 42B30; 42B20; 42B10; 42B25; 42B35;
D O I
10.1007/s13324-019-00335-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a characterization of H-Delta nu(p)(R-+(n)) Hardy spaces by using atoms associated with the radial maximal function, the nontangential maximal function and the grand maximal function related to Delta(nu) Laplace-Bessel operator for nu > 0 and 1 < p < infinity. As an application, we further establish an atomic characterization of Hardy spaces H-Delta nu(p)(R-+(n)) in terms of the high order Riesz-Bessel transform for 0 < p <= 1.
引用
收藏
页码:2281 / 2310
页数:30
相关论文
共 50 条
  • [41] UMD-Valued Square Functions Associated with Bessel Operators in Hardy and BMO Spaces
    Jorge J. Betancor
    Alejandro J. Castro
    Lourdes Rodríguez-Mesa
    Integral Equations and Operator Theory, 2015, 81 : 319 - 374
  • [42] Riesz Transforms Characterizations of Hardy Spaces H1 for the Rational Dunkl Setting and Multidimensional Bessel Operators
    Dziubanski, Jacek
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2639 - 2663
  • [43] On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator
    V. S. Guliyev
    Z. V. Safarov
    A. Serbetci
    Acta Mathematica Hungarica, 2008, 119 : 201 - 217
  • [44] Maximal function characterizations of Hardy spaces associated with Schrodinger operators on nilpotent Lie groups
    Jiang, Renjin
    Jiang, Xiaojuan
    Yang, Dachun
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 251 - 275
  • [45] Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators
    Cao, Jun
    Mayboroda, Svitlana
    Yang, Dachun
    FORUM MATHEMATICUM, 2016, 28 (05) : 823 - 856
  • [46] On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator
    Guliyev, V. S.
    Safarov, Z. V.
    Serbetci, A.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (03) : 201 - 217
  • [47] Hardy spaces associated to generalized Hardy operators and applications
    The Anh Bui
    Georges Nader
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [48] Hardy spaces associated to generalized Hardy operators and applications
    The Anh Bui
    Nader, Georges
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04):
  • [49] Localized Hardy spaces associated with operators
    Jiang, Renjin
    Yang, Dachun
    Zhou, Yuan
    APPLICABLE ANALYSIS, 2009, 88 (09) : 1409 - 1427
  • [50] On Recovery of the Singular Differential Laplace-Bessel Operator from the Fourier-Bessel Transform
    Sitnik, Sergey M.
    Fedorov, Vladimir E.
    Polovinkina, Marina V.
    Polovinkin, Igor P.
    MATHEMATICS, 2023, 11 (05)